本发明属于锂离子电池领域,涉及一种层状‑尖晶石核壳异构钴酸锂复合材料和锂离子电池及其制备方法和应用。所述层状‑尖晶石核壳异构钴酸锂复合材料具有由层状结构的钴酸锂内核和尖晶石结构的钛基复合氧化物外壳构成的核壳结构,所述钛基复合氧化物外壳的组成为Li2MTi3O8,M为Zn、Cu、Mg、Mn和Co中的一种或两种以上;所述层状‑尖晶石核壳异构钴酸锂复合材料采用液相法并以丙烯酸作为络合剂制备得到。本发明提供的层状‑尖晶石核壳异构钴酸锂复合材料能够提高锂离子电池的高温和高电压下的循环稳定性,且制备过程简单,操作方便,成本低,易于工业化生产。
本发明涉及富锂尖晶石锰酸锂复合物的制备方法,其特征在于:将尖晶石富锂锰酸锂粉末与导电粉末混合,加入湿磨介质,湿磨混合,制得前驱物1。将前驱物1用常压干燥或真空干燥的方法制备干燥的前驱物2。将前驱物2在200℃~390℃温度区间烧结,制得含导电层的尖晶石富锂锰酸锂的复合物。本发明的原料成本较低,样品的大电流放电性能有明显的改善,为产业化打下良好的基础。
本发明公开了锂离子电池负极极片补锂系统和方法。其中,锂离子电池负极极片补锂系统包括:放卷装置、补锂槽、清洗槽、收卷装置;待补锂负极极片的一端卷绕在所述放卷装置上,另一端依次穿过所述补锂槽和所述清洗槽卷绕在所述收卷装置上;所述补锂槽内盛装有补锂溶液,所述清洗槽内盛装有清洗溶液。该锂离子电池负极极片补锂系统可在极片走带过程中,通过使极片浸泡在补锂槽的补锂溶液中,使锂嵌入负极,完成对极片的补锂。由此,可以显著提高极片补锂的均匀性。后续,继续使极片浸泡在清洗液中,除去极片表面的补锂溶液等残留。由此,该系统可以实现极片的均匀补锂,且易于实现规模化生产。
本申请提供了一种补锂极片及锂离子电池。该补锂极片包括负极集流体以及设置在负极集流体至少一个表面上的负极活性材料层;在负极活性材料层远离负极集流体的表面上呈阵列排布有若干补锂区;极片化成后,若干补锂区残留的补锂氧化层在负极活性材料层上的投影面积之和S1与负极活性材料层的面积S0的比值S1/S0为30%~99%。本申请所提供的补锂极片中,通过阵列排布的补锂区有效改善极片散热性及浸润电解液的性能,同时增加了电芯拐角间隙,为极片膨胀预留空间,提高电池的使用安全和稳定性。
本发明涉及一种含有草酸磷酸锂的电解液,所述的电解液主要由以下组分配制而成:电解质锂盐、草酸磷酸锂、非水有机溶剂和其它添加剂,所述草酸磷酸锂的结构式为如下(I):本发明提供一种新的锂离子电池电解液,即含草酸磷酸锂的电解液。草酸磷酸锂在锂离子电池电解液中应用,在负极和正极表面有利于形成更稳定的钝化膜,具体体现于电池在室温和高温下具有良好的循环性能和容量恢复率,同时体现出较低的内阻。
本发明公开一种锂离子二次电池电解液,其包括非水溶剂和溶解在非水溶剂中的锂盐,其中,非水溶剂含有质量占非水溶剂总质量0.5%~15%的硼酸衍生物锂盐,所述硼酸衍生物锂盐的结构式下式所示:其中,R1、R2、R3、R4、R5和R6为氢、卤素、烷基、烯烃基、卤代烷基、芳香基、含有卤素取代基的芳香基团或含氧基团中的任一种物质;所述含氧基团为烷氧基、卤代烷氧基、含氧芳香基团或含有卤素取代基的含氧芳香基团;并且,R3、R4、R5和R6中至少有两者为卤素,所述卤素为F或Cl,及R1和R2中至少一者为芳香基团或含有卤素取代基的芳香基团。本发明通过在电解液中添加硼酸衍生物锂盐,在锂离子电池首次充电时,形成稳定、致密、有韧性的SEI膜,改善电解液的低温放电性能以及循环性能。
本申请涉及锂硫二次电池技术领域,主要涉及一种用作锂硫二次电池正极活性材料的锂化的硫化聚丙烯腈,以及包括该活性材料的正极片和锂硫二次电池。所述锂化的硫化聚丙烯腈通过将硫化聚丙烯腈进行锂化制得。本发明通过对硫化聚丙烯腈进行锂化,使得硫化聚丙烯腈活性材料本身生成亲水性的羧酸根离子,与导电粘结剂复合时,有利于体系内部形成作用力较强的氢键,有利于提高正极的硫负载量和单位面积容量。
本发明提供了一种复合钛酸锂材料及其制备方法与锂电池,所述复合钛酸锂材料包括具有空心立方体结构的钛酸锂和包覆在钛酸锂表面的铈锆固溶体,一方面,空心立方体结构的钛酸锂具有较高的比表面积,能够缩短电子传输路径,提高钛酸锂材料的电子导电率,从而能提高制得的锂离子电池的倍率性能和循环性能;另一方面,通过将铈锆固溶体包覆在钛酸锂表面,能够提高微米级立方体形貌钛酸锂整体的稳定性,从而能提高制得的锂离子电池的倍率性能和循环性能,可将以本发明的复合钛酸锂材料为负极材料制得的锂离子电池用于电动车,更进一步地,可将其作为共享锂电池使用。
本发明公开了锂电池补锂和制作方法。其中,锂电池补锂方法包括:提供补锂溶液和锂电池前体,所述补锂溶液包括金属锂、芳香化合物和溶剂,所述锂电池前体包括壳体和设在所述壳体内的内容物,所述内容物包括正极极片、隔膜、负极极片;将所述补锂溶液注入所述锂电池前体的壳体内,利用所述补锂溶液浸泡所述内容物,以便对所述正极片和所述负极片的至少之一进行补锂。该方法通过在注入电解液前,向锂电池前体注入补锂溶液浸泡极片的方式对极片补锂,可大大节省加工工序,不影响生产效率,生产成本低,且具有较好的制造可行性。
本发明公开了一种锂电池高温防护结构及锂电池,包括导热模块、锂电池、正极导电板、负极导电板和驱动散热系统,导热模块包括正面导热管、导热槽、流动管、背面导热管、背面流动管、背面导热管支架、底面导热腔、底面阻流板、垂直阻流板、垂直阻流板这固定板和导热球。本发明通过设置的导热模块,由于锂电池在工作工作过程中会产生大量的热量,可以通过导热槽使锂电池的热量传递到导热槽中,并且通过冷却液使温度传递到散热排内,从而实现降温的效果,通过设置的驱动散热系统,而可使导热槽和底面导热腔内的冷却液可以不断的循环流动,并且可以配合前侧散热扇叶和背面散热扇叶使热量传递到外界空气中,从而提高锂电池的工作效率。
本发明属于动力锂离子电池材料学领域,具体涉及一种高性能Ge/GeO2-介孔碳复合电极材料的制备方法及其应用。将介孔碳用硝酸50-70℃回流0.5-2小时;将锗盐分散于适量乙醇,用磁力搅拌器搅拌5-20分钟后,再加入介孔碳,继续搅拌5-20分钟,超声5-10分钟,50-70℃烘干2-4小时;所得粉末在N2气氛管式炉中600-800℃煅烧2-6小时,即得所述的Ge/GeO2-介孔碳复合材料。将上述制备得到的复合材料组装成锂离子电池,并以该材料为电池负极,以该材料参杂后复合物作为电池正极组装成锂离子电池。本发明工艺简便,原料易得,重现性好,可大量生产,无明显污染排放,符合环境要求。
本发明公开了一种锂离子电池正极片,其包括集流体、设置在集流体上的过渡层和设置在过渡层上的活性物质层,其中,过渡层包含第一活性物质、第一导电剂和第一粘结剂,第一导电剂为零维导电材料。相对于现有技术,本发明锂离子电池正极片中设置了过渡层,且过渡层的导电剂选用零维导电材料,增加了活性物质层与集流体之间的粘结力,改善了接触电阻,有效解决了浆料与集流体之间粘结性不好的问题,压实后能得到很完整的正极片,可改善电池的循环性能。此外,本发明还公开了一种锂离子电池正极片的制备方法和包含本发明锂离子电池正极片的锂离子电池。
本发明涉及一种锂离子电池用电解质及包含其的锂离子电池,所述锂离子电池用电解质按照重量百分比计由以下各组分组成:10~18%的六氟磷酸锂、0.2‑2.0%二氟磷酸锂、0.2‑1.5%二氟草酸硼酸锂,5~15%的丙酸乙酯、30~50%的碳酸二甲酯、10~20%的碳酸二乙酯、15~30%的碳酸甲乙酯、0.5~5%的碳酸乙烯酯、1.5%~5%的氟代碳酸乙烯酯。所述锂离子电池包括正极片、负极片、隔膜和所述电解质,所述正极片包括正极活性物质,所述正极活性物质为锰酸锂、钴酸锂、镍钴锰酸锂中至少一种,粒度在6‑11微米。该电池在‑30℃下充电不发生析锂,具有较好的低温性能,同时可以适用于‑40℃,具有平稳的放电平台。
可充锂电池用尖晶石锂锰钛氧化物正极材料的制备方法,涉及一种可充锂电池正极材料 的制备方法。提供一种方法简单、廉价和安全,具有良好电化学活性的可充锂电池用尖晶石 锂锰钛氧化物正极材料的制备方法。所述可充锂电池用尖晶石锂锰钛氧化物正极材料为锂锰 钛氧化物正极材料,可表示为LiMn2-xTixO4,0.2≤x≤1。将锂化合物、锰盐和钛化合物按化学计 量比在乙醇中混合,加热反应后烘干,得到凝胶中间体;将得到的凝胶中间体球磨后进行高 温热处理,得到LiMn2-xTixO4,0.2≤x≤1目标产物。
本发明提供了一种锂云母氟化学提锂工艺,该工艺步骤包括:将原料物料重量比为锂云母粉∶添加剂∶硫酸=1∶(0.1-2)∶(0.5-5)的原料投入到预反应器中搅拌反应或简单搅拌后进入反应器反应,添加剂为含氟的矿物、盐或酸的一种或多种,在预反应器中的反应条件:50℃-150℃下预热0.1-2小时,物料转入到反应器中,在150℃-350℃下反应0.5-4小时,反应过程中产生的气体及时抽出,反应渣用水浸取后,液固分离得到硫酸盐溶液,调节pH=5.0-10.0以除去铝、镁、钙、铁等离子杂质,液固分离后溶液浓缩,沉淀锂离子后过滤制取粗锂盐产品,根据需要,制取相应的精制锂盐,本发明所述的工艺,反应温度低,生产能耗小,锂提取率高,在生产锂盐的同时亦可综合利用锂云母矿物的各种有价值成分。?
本发明涉及一种脱氟锂云母管道溶出提锂的方法,将脱氟锂云母矿粉、碱金属或者碱土金属的硫酸盐及添加剂与水按比例调浆,浆料经过预热器预热后或者直接用泵输送到管道反应器中进行高温高压溶出反应,反应完成后经过冷却并回收热量,并对浆料进行固液分离并洗涤,滤液通过浓缩、除杂,加入碳酸钠沉锂结晶过滤得到锂盐产品,沉锂母液循环至配料调浆或者经过析钠后回收硫酸钾、硫酸铷与硫酸铯。本发明方法系统结构简单,与其他锂云母溶出提锂技术相比,管道反应器中没有机械搅拌装置易于实现高压,投资少,成本低、能耗小,反应渣可综合利用。该方法绿色环保、经济效益高,具有工业化生产应用前景。
本发明涉及一种具有膜核结构的锂电池正极材料前驱体、制备、加工及掺杂型锂电池正极材料,通过原子层沉积法在锂电池正极材料前驱体本体表面,包覆一层或者多层用于掺杂的金属或者金属化合物薄膜,形成具有膜核结构的锂电池正极材料前驱体。具有膜核结构的锂电池正极材料前驱体,可通过煅烧形成掺杂型前驱体,然后混锂再烧结形成掺杂型正极材料。或者,具有膜核结构的锂电池正极材料前驱体直接与锂源混合,然后烧结形成掺杂型正极材料。本发明相比现有的正极材料掺杂方法,本发明形成的掺杂的组分及含量控制更加精准,掺杂更均匀,且不影响前驱体和正极材料的形貌及结构。
本发明涉及硅胶包覆的尖晶石富锂锰酸锂正极材料的制备方法,其特征在于将化学组成为LixMnyOz的尖晶石富锂锰酸锂粉末与纳米硅胶粉末按照重量比1:0.0001~0.02混合,经过湿磨、干燥等步骤制备前驱物2; 将前驱物2在300℃~380℃温度区间的任一温度烧结处理5小时~48小时,制得包覆硅胶的尖晶石富锂锰酸锂。本发明的原料成本较低,样品的大电流放电和存放性能有明显的改善,为产业化打下良好的基础。
本发明涉及掺钒尖晶石富锂锰酸锂正极材料的制备方法,其特征在于按照锂、锰、钒离子摩尔比为(0.95≤x≤1.06):(1.05≤y≤1.25):(0.05≤z≤0.25)分别称取锂、锰、钒的化合物。将称取的化合物混合,加入湿磨介质制得前驱物1。将前驱物1干燥制备前驱物2。将前驱物2用两段烧结法制备掺钒尖晶石富锂锰酸锂正极材料。本发明的原料成本较低,掺钒改善了样品充放电的循环性能,为产业化打下良好的基础。
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池用磷酸铁锂正极浆料的制备方法。新型磷酸铁锂正极浆料其由重量份制备而成:磷酸铁锂、导电碳1.5~3份、改性粘结剂为5~10份、N‑甲基吡咯烷酮为。其制备步骤为:将15~20重量份磷酸铁锂、部分重量份N‑甲基吡咯烷酮混合,湿磨后制成磷酸铁锂正极浆料的初料;在初料中加入1.5~3重量份导电碳、5~10重量份改性粘结剂和总量的余量N‑甲基吡咯烷酮,在水浴中,再湿磨混合,制得锂离子电池用磷酸铁锂正极浆料。采用本发明的方法制备的正极浆料具有较宽的放电平台和较好的容量保持性,显著降低了锂离子电池的内阻,提高了电池的循环稳定性能。
本申请涉及一种复合金属锂负极、其制备方法、锂二次电池及装置。本申请所提供的复合金属锂负极,包括金属锂及位于所述金属锂至少一个表面上的锂缓冲层,所述锂缓冲层包括多孔骨架和亲锂材料,所述多孔骨架为导电性多孔骨架,所述亲锂材料分布于所述多孔骨架中;并且,在所述锂缓冲层远离所述金属锂的方向上,所述亲锂材料在所述多孔骨架中的分布密度呈连续梯度减小。本申请在锂金属负极表面增设了亲锂性呈连续梯度变化的导电性锂缓冲层,既能为锂离子的沉积与脱出提供足够的迁移通道,又能诱导锂金属在锂缓冲层中均匀沉积,从而抑制锂枝晶的形成,延长锂金属电池的循环寿命。
本申请涉及储能器件领域,尤其涉及一种锂离子电池软包装材料及使用该材料的锂离子电池。该软包装材料由外至内依次包括基材层、第一粘接层、金属箔层、防腐蚀处理层、第二粘接层以及密封层;防腐蚀处理层由镍层、镍合金层、铜层以及铜合金层中的至少一层构成,且防腐蚀处理层镀在金属箔层上。该锂离子电池包括裸电芯、电解液以及包装袋,包装袋将裸电芯以及电解液一并包裹,包装袋采用上述锂离子电池软包装材料。本申请所提供的锂离子电池通过采用镀有防腐蚀处理层的软包装材料,抗氢氟酸能力明显提高,并且不易形成锂合金,即使在负极与包装材料短路时也不会析锂,因此可以更好的抵抗电化学腐蚀,增强锂离子电池的使用安全性和增加使用寿命。
本发明公开了一种负极极片、电芯及锂离子电池,负极极片包括负极集流体;负极活性物质层,设置于负极集流体,负极活性物质层中的负极活性物质包含硅基材料;无粘结剂的无机介电层,设置于负极活性物质层的远离负极集流体的一侧,无机介电层包括无机介电材料,无机介电层至少包括设置于负极活性物质层的表面的主体部,主体部具有沿自身厚度方向贯通设置的通道;锂金属层,设置于无机介电层的远离负极活性物质层的表面。采用本发明提供的负极极片,能够使锂离子电池同时兼顾较高的容量性能、安全性能及循环寿命。
本发明公开了一种锂离子电池的制备方法及锂离子电池,涉及锂离子电池技术领域。该锂离子电池的制备方法包括:正负极集流体的预处理、正负极片的制备以及电池的组装,正极集流体先用草酸溶液擦拭再用高锰酸钾溶液擦拭;正极片先涂覆石墨烯‑环糊精交联聚合物浆料,再涂覆正极材料浆料,涂布面密度75~85mg/cm2,正极活性物质占正极材料的98~99%,正极活性物质包括10~30%的钴酸锂、10~30%的镍酸锂和50~70%的LiMnxFe1‑xPO4(0.5<x<1)。本发明缓解了目前电池能量密度及安全性不能兼顾的问题,通过本发明方法得到的锂离子电池不仅能量密度高且安全性好。
本实用新型公开了一种纽扣锂电池金属锂成型机,包括基座底板和排版式循环周转盘,所述基座底板的上表面焊接有机架立板,定位气缸的活塞杆带动定位板自动顶起锁定排版式循环周转盘,冲压气缸的活塞杆带动成型冲刀伸出通过导向脱模板,配合下剪口剪切锂带并成型待命,拍打气缸的活塞杆带动拍打组件上的冲头伸出把所有已成型的锂片置入对应的负极盖内,拍打组件上的冲头和成型冲刀缩回,定位板下降放开排版式循环周转盘,取出排版式循环周转盘和金属锂边料。该金属锂成型机由一人完成,大大的提高了纽扣锂电池的装配效率,因为人机结合,在负极锂成型前后出现任何不良品都可以及时剔除,避免加重浪费和损耗。
本发明提供了一种碳酸锂苛化法制备氢氧化锂的方法,包括如下步骤:S1,将碳酸锂、水、生石灰混合成浆料,其中,所述生石灰与所述碳酸锂的摩尔比为1.1~1.5:1,且所述碳酸锂在所述浆料的质量浓度为28%‑35%;S2,将所述浆料存放于反应釜中进行苛化反应7‑7.5小时,其中,反应温度为115‑125℃,反应过程中调节PH值8.5‑9.5,反应过程中同时进行搅拌得到氢氧化锂浆料;S3,对所述氢氧化锂浆料进行过滤分离得到苛化碳酸钙滤渣以及苛化液;S4,将所述苛化液蒸发结晶分离,得到湿的氢氧化锂产品;S5,将所述湿的氢氧化锂产品进行干燥处理得到氢氧化锂产品;S6,将所述苛化碳酸钙滤渣进行煅烧分解,得到生石灰。
本申请提供了一种锂离子电池电解液、其制备方法及锂离子电池,包含锂盐、溶剂以及稀释剂,所述锂盐为双(氟磺酰)亚胺锂、双(三氟甲基)‑磺酰亚胺锂中的一种,溶剂为乙二醇二甲醚,稀释剂选自1,1,2,2‑四氟乙基2,2,3,3‑四氟丙醚、2,2,2‑三氟乙基‑1,1,2,2‑四氟乙基醚、双(2,2,2‑三氟乙基)醚中的至少一种。以磷酸铁锂等为正极、锂金属等为负极以及本发明的电解液所制备的锂离子电池,兼具高比容量、充放电倍率、长寿命、良好高温特性等优良特性。并且电解液制备工艺简单,原料易得,对隔膜、电极的润湿性好、具有阻燃效果,适用大规模工业化生产,具有高商业化价值和应用前景。
本发明涉及矿石提锂技术领域,尤其涉及一种从锂矿石中提取锂的工艺。该工艺包括以下步骤:磨浸,对锂辉石与含钙物质的混合物料边研磨边浸出,形成浆料;其中,所述含钙物质为碳酸钙、氢氧化钙、氧化钙、以碳酸钙为主要成分的物质、以氢氧化钙为主要成分的物质或以氧化钙为主要成分的物质中的一种或几种的混合物;压浸,对磨浸后的所述浆料进行压煮反应,使所述锂辉石中的锂离子浸出,其中,压浸过程的液体与混合物料的液固质量比大于3:1。本发明所采用的工艺具有对环境友好、较高的锂浸出率、能耗低、工艺简化易操作等多重优势。
本发明属于锂离子电池材料技术领域,具体涉及一种基于四硫代富瓦烯二羧酸锂的锂离子电池负极及其制备方法。本发明首先以二硫化碳和丙炔酸甲酯为原料,在三丁基膦催化下合成四硫代富瓦烯二羧酸甲酯,再经过水解、酸化和锂化得到四硫代富瓦烯二羧酸锂。将制备的四硫代富瓦烯二羧酸锂、导电剂和粘结剂混合分散在N‑甲基吡咯烷酮中,然后涂布在铜箔上,烘干并切片得到四硫代富瓦烯二羧酸锂负极。所得负极具有放电比容量高和循环稳定性好等优点。
本发明属于电极材料领域,具体涉及一种锂离子正极材料补锂改性方法。采用Li2C2作为补锂材料与导电材料形成核壳结构的粉末补锂材料,在正极制浆过程中加入,不需要引入复杂的工艺设备,在原有工艺基础上,来解决传统技术中锂电池活性锂损失造成的不可逆容量损失。本发明方法不仅是一种工艺更加简单,组装过程更加安全,并且能够同时提升锂电池的首效、循环性能、能量密度。
中冶有色为您提供最新的福建有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!