本发明提供了一种用于含铀废水中铀的吸附剂,包括杯[6]芳烃修饰的磁性氧化石墨烯,所述杯[6]芳烃修饰的磁性氧化石墨烯由杯[6]芳烃与磁性氧化石墨烯经过酯基键结合。本申请还提供了一种含铀废水中铀的吸附方法,包括:将含铀废水与吸附剂混合进行铀的吸附;所述吸附剂包括杯[6]芳烃修饰的磁性氧化石墨烯,所述杯[6]芳烃修饰的磁性氧化石墨烯由杯[6]芳烃与磁性氧化石墨烯经过酯基键结合。本申请还提供了杯[6]芳烃修饰的磁性氧化石墨烯的制备方法。本发明以备杯[6]芳烃修饰的磁性氧化石墨烯作为含铀废水中铀的吸附剂,其对低浓度中铀的吸附能力、选择性和吸附效果优异。
本发明公开了一种Cu3B2O6/g?C3N4异质结光催化剂的制备方法及其降解亚甲基蓝染料废水的方法。以柠檬酸、硝酸铜和硼酸为Cu3B2O6原料,以三聚氰胺为g?C3N4原料,采用研磨?煅烧制备法制得该异质结光催化剂,在可见光的照射下利用该试剂降解亚甲基蓝染料废水。本发明的处理方法能高效利用可见光,对设备要求低,能耗少,运行成本低,短时间内亚甲基蓝的去除率可达到100%,且Cu3B2O6/g?C3N4光催化剂可再生使用。
本发明公开了一种基于可调节A/O反应器的废水处理系统,包括进水口、功能区和出水口,所述功能区沿水流方向依次包括厌氧池、第一级好氧池、缺氧池、第二级好氧池和二沉池,相邻两个池子之间通过挡板隔开,每个所述挡板上均设有溢流孔和溢流管,所述溢流管设于溢流孔的出口处,所述溢流管的上端高于所述溢流孔,所述溢流管的下端出口延伸至挡板的底部。本发明还相应提供一种高负荷废水处理方法。本发明废水处理系统的功能区中各池子相互协同作用,处理效果好,能高效去除废水中COD、NH4+‑N、TN和TP,并且处理周期短。
本实用新型公开了一种硫铵废水和蒸发冷凝液废水脱氨装置,包括稀硫酸储罐、原水储罐、第一脱氨膜组件和第二脱氨组件,本实用新型采用第一脱氨膜组件和第二脱氨组件疏水性的中空纤维微孔膜作为含氨料液和吸收液的屏障,膜一侧是待处理的氨氮料液,另一侧是酸性吸收液,疏水的微孔结构在两液相间提供一层很薄的气膜结构,料液中游离态的NH3在废水侧通过浓度边界层扩散至疏水微孔膜表面,随后在膜两侧NH3分压差的推动下,NH3在废水和微孔膜界面处气化进入膜孔,然后扩散进入吸收液侧与酸性吸收液发生快速的不可逆的反应,从而达到氨氮脱除、回收的目的,对含氨废水具备优秀的脱氨效果,可快速达到排放标准。
本发明公开了一种含2,4‑二氯‑3,5‑二甲基苯酚(DCMX)的高盐废水的处理方法。本发明步骤包括由(1)筛选、驯化与鉴定:含DCMX高盐废水中筛选得到的微生物,经过DCMX与盐度驯化,对筛选所得菌种进行生物学鉴定;(2)降解:避光进行DCMX的降解。本发明对DCMX的降解率可达到80%以上。本发明解决了物理和化学方法对低浓度DCMX的实际处理效果不佳的问题;同时,改善了生物方法在高盐度条件下处理含DCMX废水效果不佳的问题。此外,该方法具有高效,简易,成本较低且绿色环保等特点,对于保护环境、节约资源与成本有重要意义。
本发明公开了一种用于酿酒企业废水综合利用的废水采样方法,方法步骤如下:步骤一:转动采样装置使其与浮体分离,浮体采用无线遥控技术控制在废水池的液面上行走至待采样的区域;步骤二:通过电机驱动卷扬机释放缆绳,采样装置在自身重力作用下下沉至取样高度;步骤三:控制器控制采样装置在同一取样高度上完成单个或多个采样样本。本发明中的采样装置采用多个采样瓶环形分布形式,每个采样瓶均通过电动滑块动作带动拨动环将采样瓶打开完成样本的采集,样本瓶的采水进水口与倒水口分开设置,采水进水口设置在瓶盖上配合拨动环驱动将其打开和闭合,既可以使样本瓶稳定的固定在底座上,又不影响采样结束后样本瓶的拆卸。
本实用新型公开了一种电镀废水和显影废水以废治废的装置,包括依次通过管路连接的预混反应池、快混池、慢混池、pH调节池、过滤池、厌氧消化池、污泥浓缩池和回收池,所述预混反应池、快混池和慢混池内设有搅拌装置,所述搅拌装置与电机连接,所述pH调节池分别与酸液箱和碱液箱连接,所述厌氧消化池内包括上空间和下空间,所述下空间内设有悬浮填料和滤料层,两种废水通过预混反应池、快混池、慢混池混合后,经pH调节池调节沉淀后,经微生物厌氧消化,达到可回收的状态。本实用新型结合化学处理和生化处理,将电镀废水和显影废水同时处理达到可回用状态,装置简单,环境污染小,化学药剂用量低,投入较少,回收处理效果达到国家标准。
本实用新型涉及废水处理领域,公开了一种废水监测设备及系统,所述废水监测系统包含多个废水排放管组,每个管组中包括排放含有同类污染因子的多个分管和总管,并在总管和分管侧分别设置有总管监测设备和分管监测设备,在所述总管监测设备分析处理得到废水中含有的污染因子种类及含量时,由远程管理平台判断其是否发生混排,并在混排时,产生触发指令,以触发相应的所述分管监测设备,监测所述分管传输的废水样本,并在所述分管监测设备检测出所述废水样本中含有混杂的污染因子时,产生控制指令,以采取相应的处理,从而起到预防混排的目的。
本发明涉及一种去除废水中重金属与氨氮的吸附剂及其制备方法,其特征在于该吸附剂的化学成分按重量百分比计由30~80%催化剂虑渣、10~30%添加剂、10~40%粘土组合而成;该吸附剂的制备方法包括以下步骤:A、将添加剂、粘土加入到催化剂滤渣中,充分搅拌均匀后喷雾干燥成型,喷雾微球中位径为50~60μm;B、将步骤A的物料,在温度500~1000℃下焙烧0.5~5小时;C、将步骤B的焙烧料加水、添加剂和粘土,充分搅拌均匀,通过挤条或滚球或压片等方式成型,干燥,干燥温度为100~150℃,干燥时间为10~24h,制成吸附剂。该方法制备流程简单,成本低廉,能够高效去除废水中的重金属离子和氨氮等有毒有害污染物,处理方法简单,应用范围广,效果稳定,符合“以废治废”的绿色环保理念,具有较好的应用前景。
一种用于降解废水中污染物苯醌的复合药剂,包括稳定剂A、微生物供能物质B和絮凝剂C,稳定剂A、微生物供能物质B和絮凝剂C的混合质量比为20~35∶465~480∶300~500。本发明复合药剂降解处理废水中污染物苯醌的方法包括:对废水调pH值,然后将复合药剂中的微生物供能物质B和絮凝剂C投加到废水中,混合均匀后再将复合药剂中的稳定剂A投加到废水中;复合药剂的添加浓度控制为不少于120mg/L;混合后经充分反应,再经微生物处理完成污染物苯醌的降解。本发明的技术方案对苯醌降解效果好且稳定,处理成本低,易于实施。
本发明公开了一种含亚硫酸氢盐废水的催化处理系统及废水处理方法。该系统包括含亚硫酸氢盐的废水输送管道、催化歧化反应仓、载硫活性炭催化层以及硫回收装置;所述载硫活性炭催化层设置在催化歧化反应仓的内腔中,并位于进料口和出料口之间,硫回收装置通过第二输送管道与出料口相连通。本发明的系统结构简单,易操作,成本低,易推广,具备大规模应用的前景,可在50℃左右的条件下实现亚硫酸氢根离子的催化歧化反应并回收获得硫资源。一方面降低了富硫气体洗涤废水中盐分含量,另一方面实现了硫资源化的目的。极大的降低了液碱消耗,并且无二次污染产生,具有广阔的市场前景和经济效益。
本发明公开了一种基于磁性含钛矿物/腐殖酸复合吸附材料的废水中重金属梯级吸附和回收方法。该方法利用磁性含钛矿物/腐殖酸复合吸附材料在不同pH值下对不同重金属离子吸附有选择性的特点,通过控制废水的pH值,达到废水中多种重金属离子梯级吸附和回收的目的,该方法不仅能够高效去除废水中的重金属离子,而且可以将废水中的不同重金属离子梯级分离回收利用,经过梯级吸附处理的酸性废水可以达标排放,降低废水治理成本。
本发明提供一种微波催化降解有机废水用催化剂,催化剂包括金属氧化物,所述金属氧化物为含铋的金属氧化物。本发明的催化剂能充分吸收微波而被激发产生电子‑空穴对,有机废水中的水分子与强吸电子的空穴结合从而产生的羟基自由基等活性氧物质充当了降解反应的氧化剂,实现有机废水的高效降解。本发明还提供一种有机废水的处理方法,包括以下步骤:步骤A、将催化剂与有机废水混合均匀;步骤B、置入微波设备内,在微波辐照下进行降解,冷却至室温即得降解后的废液。本发明的处理方法适用于硝基酚的浓度为100‑500mg/L的所有废水,实用性强;微波辐照参数控制方便,辐照时间短,且降解率能达到99.2%,满足高效需求。
涉及三元前驱体洗涤废水中物料回收和废水循环利用的装置,包括母液槽、微孔精密过滤器、废水槽、储槽、气源、压力泵、进料阀、放料阀、反吹阀、出料阀、反冲阀;母液槽、压力泵、微孔精密过滤器的进料口依次通过管道相接,且该管道中设置进料阀;微孔精密过滤器的放料口、放料阀、储槽依次通过管道相接;提供压缩空气的气源、反吹阀、微孔精密过滤器的进气口依次通过管道相接;微孔精密过滤器的出料口、出料阀、废水槽依次通过管道相接;废水槽、反冲阀、微孔精密过滤器的出料口依次通过管道相接。既回收了物料,又实现废水循环利用,属于废水处理技术领域。
本实用新型提供一种用于高盐有机废水处理的蒸发结晶制盐设备及废水处理系统,该设备包括闪蒸罐,其具有第一循环水入口和位于第一循环水入口之下的循环水出口,循环水出口和第一循环水入口由循环管道连接,循环管道上设置有加热装置。蒸发结晶制盐设备还包括与闪蒸罐的底部连接并贯通的盐洗涤腿,盐洗涤腿进一步包括:位于盐洗涤腿内、入水方向朝下的上部入水口,位于上部入水口下方、构造为使盐洗涤腿内的废水产生旋流的中部入水口,以及位于中部入水口下方的排盐口。本实用新型的蒸发结晶制盐设备及废水处理系统能够在结晶盐粒与废水混合的状态下对结晶盐粒进行多次洗涤,结构简单,废水处理效率高、成本低,所得到的结晶盐粒纯度高。
本发明涉及处理废水的方法,包括在有或无紫外光的情况下,将二氧化钛与氧化试剂联用以处理废水。本发明还涉及废水处理剂,包括二氧化钛和氧化试剂,所述二氧化钛和氧化试剂物理隔离或混合在一起形成混合物。申请人意外发现,在有或无紫外光的情况下,将二氧化钛与氧化试剂联用处理废水后,废水的COD降低得出人预料,废水处理时间亦缩短,同时缩减了流程,提高了效率。
涉及一种三元前驱体洗涤废水中物料回收和废水循环利用的装置,包括母液槽、微孔精密过滤器、废水槽、储槽、气源、压力泵、进料阀、放料阀、反吹阀、出料阀、反冲阀;母液槽、压力泵、微孔精密过滤器的进料口依次通过管道相接,且该管道中设置进料阀;微孔精密过滤器的放料口、放料阀、储槽依次通过管道相接;提供压缩空气的气源、反吹阀、微孔精密过滤器的进气口依次通过管道相接;微孔精密过滤器的出料口、出料阀、废水槽依次通过管道相接;废水槽、反冲阀、微孔精密过滤器的出料口依次通过管道相接。还涉及一种三元前驱体洗涤废水中物料回收和废水循环利用的方法。既回收了物料,又实现废水循环利用,属于废水处理技术领域。
本发明公开一种高浓度氟氯废水资源化处理装置,包括依次连通的PH调节器、反应器、固液分离器及再生循环器;废水流入PH调节器,PH调节器用于将废水调节至预设的PH值范围;调节后的废水流入所述反应器,反应器用于向废水中投入分离剂,并促使分离剂与废水反应生成固液混合物;固液混合物流入固液分离器,固液分离器用于排出固液混合物中预设值的液体;剩余的固液混合物流入再生循环器,再生循环器用于向固液混合物中加入提取剂,并促使提取剂与固液混合物反应生成分离剂;再生循环器还用于将生成的分离剂输入反应器。本发明提供的高浓度氟氯废水资源化处理装置能够实现节能环保、资源化循环利用。
镍氨废水生物制剂配合水解-吹脱处理方法。本发明以镍氨废水为处理对象,利用加质子反应破坏含镍废水中的镍氨配合物,采用生物制剂与镍形成配合物,之后以碱为中和剂,使生物制剂镍配合物水解,以难溶化合物的形式沉淀出来,经压滤,上清液和滤液为脱镍后的含氨废水,进入氨的吹脱工艺,吹脱后的净化水达标排放,而氨气则进行吸收防止二次污染,含镍渣可以进行镍的回收,达到去除镍氨废水中的镍和氨以及回收其中的镍的目的。本发明实现了清洁、高效、处理镍氨废水,出水中镍浓度和氨浓度稳定达到国家《污水综合排放标准》。
本发明提供了一种用于厂区生产废水和高盐废水的高效处理结构,涉及废水处理技术领域,包括装置外壳、底部支架、输入管道、加热内筒、顶盖,装置外壳底部表面固定连接有底部支架,装置外壳顶部左侧固定连接有输入管道,装置外壳内部固定连接有加热内筒,加热内筒内侧固定连接有蒸馏机构,装置外壳顶部表面卡接连接有顶盖,装置外壳右侧配套设置有发电机构。本实用中气体则从发电机的另一端排出,而装料筒中的物质在蒸腾后会会留下盐结晶,而在使用长的时间后,通过将底部挡板打开,然后电动马达工作带动齿轮,然后齿轮与啮合凸起啮合,从而使得装料筒沿着装置外壳的下方移动出,然后对装料筒清理或是更换即可,从而更加的方便。
本发明涉及高盐有机废水处理技术领域,具体为一种高盐有机废水设备用废水处理回收机构及其回收方法,包括包括回收处理箱,回收处理箱的左侧分别连通有进料管和加药管,回收处理箱的内腔活动连接有搅拌机构,回收处理箱内壁的右侧连通有电磁阀,回收处理箱内壁的底部固定连接有与电磁阀配合使用的第一导流板,回收处理箱的内腔活动连接有过滤网组,过滤网组的顶部贯穿至回收处理箱的顶部,过滤网组顶部的两侧均固定连接有把手,回收处理箱顶部的两侧均固定连接有固定壳。该高盐有机废水设备用废水处理回收机构及其回收方法,具有便于对废水中的杂质进行收集,便于拆卸过滤膜进行维护的优点,值得推广。
本发明公开了一种用于废水检测用的废水后处理装置及其处理方法,涉及废水后处理装置技术领域;为了提高对废水过滤的效率;该处理装置具体包括处理支撑座,所述处理支撑座顶部外壁通过螺栓固定有支撑架,所述支撑架两侧内壁通过螺栓固定有同一个柱形过滤箱,所述柱形过滤箱圆周外壁分别开设有进水口和出水口,所述柱形过滤箱一侧内壁转动连接有空心柱,所述柱形过滤箱一侧外壁通过螺栓固定有伺服电机,所述伺服电机输出端通过联轴器连接于所述柱形过滤箱一侧外壁;该处理装置的处理方法,包括以下步骤:将废水通过废水导入管导入到柱形过滤箱内。本发明通过设置有进水口可以用于将需要进行后处理的废水导入到柱形过滤箱内。
本发明公开了一种多相流旋转泡沫分离装置及其用于处理废水、废气的工艺。本发明用于高氨氮污水处理,可替代常规的好氧曝气、汽提与吹脱等工艺,其上限浓度可不受限制,氨氮去除率可达到95%以上,CODcr的去除率可达到98%以上,装置本身兼有氨氮游离反应、吹脱和氨回收等多项功能,易于配套完成高氨氮废液的全循环操作,实现真正意义上的“零排放”;用于高温、高硫、高湿、高含尘量的各类工业烟气处理,可集降温、脱硫、除尘于一体,脱硫率可达90%以上,除尘率可达到99%以上,多级串联则可达到电除尘的效果,而项目投资和能耗则要远低于电除尘。
本发明公开了一种处理有机废水的AABR—复合式MBR一体化装置及废水处理方法。为了实现对中高浓度有机废水的达标处理,所述一体化装置包括具有填料和MBR膜组件的复合式MBR反应池,该复合式MBR反应池的出水端与一产水池连通;所述复合式MBR反应池的进水侧设有与进水管连通的AABR反应池,该AABR反应池包括缺氧段和与多级厌氧池,所述缺氧段和厌氧池内均设有竖向布置的折流板;所述复合式MBR反应池的出泥端分别与所述缺氧段和第一级厌氧池连通;所述进水管分别与所述AABR反应池的缺氧段和多级厌氧池中的第一级厌氧池连通。本发明将ABR进行改进组成AABR,再由AABR与复合式MBR反应池组成倒置A/A/O脱氮除磷工艺的形式,在降解中高浓度有机物的同时,实现了脱氮除磷。
本发明公开了一种餐厨垃圾的“地沟油”、固体垃圾及餐厨废水三相分离的装置,该装置主要由壳体、固液分离室、带网孔的过滤袋、液位显示器、油水界面探测器、排泄“地沟油”的数控电动阀门、“地沟油”的流量计、“地沟油”收集罐、送风机、空气加热器、过滤罐、加药罐等组成;本发明的油水分离与废水净化在同一装置内进行,简化了设备结构,净化后的水质符合国家《污水排入城市下水道水质标准》(CJ3082-1999)各项指标,具有体积小、投资低、手动或自动操作均可等多种优点,具有明显的创造性、新颖性和好的工业实用性。
本发明公开了一种吡唑醚菌酯生产废水碱解用催化剂及其制备方法、吡唑醚菌酯生产废水的预处理方法,该催化剂是以改性生物质炭、铁系金属催化剂、海藻酸钠为原料通过交联剂的交联作用固化而得。利用本发明催化剂对吡唑醚菌酯生产废水进行预处理。本发明催化剂具有成本低廉、比表面积大、活性位点数量多、分散性好、稳定性好、催化性能好等优点,解决了现有铁系金属催化剂存在的活性差、分散效果不佳等问题,用于处理吡唑醚菌酯生产废水时,能实现较好的处理效果以及能够提高废水的可生化性,使用价值高、应用前景好。本发明催化剂的制备方法,具有制备工艺简单、制备条件温和、成本低廉、无二次污染等优点,适合于大规模制备,有利于工业化应用。
本发明公开了一种处理含锰镁电解锰废水并回收废水中锰的方法,包括以下步骤:(1)将石灰调制成石灰乳,连续加入到废水中并不断搅拌,调节废水中pH值在8‑10,充分搅拌后过滤,得到一次锰渣和一次滤液;(2)向一次滤液中连续加入石灰乳并不断搅拌,调节pH值在8‑10,充分搅拌后过滤,得到二次锰渣和二次滤液;(3)向二次滤液加入氧化剂并不断搅拌,然后过滤分离,得到三次锰渣和三次滤液;(4)将以上得到的各次锰渣返回到电解锰生产过程中的锰矿浸出工序循环利用。本发明在多次沉淀过程中全部选用石灰乳作为沉淀剂,既能实现废水中锰大量沉淀析出回收,同时还可避免镁大量析出,且在常温常压下进行,成本低廉,易于实现工业化。
本发明提供一种用于处理废水的电极、包括该电极的废水处理装置和废水处理方法,所述电极包括导电基材;光催化剂,负载在导电基材的第一表面上,用于去除废水中的有机物;复合催化剂,负载在导电基材的第二表面上,用于去除废水中的无机含氧酸根和金属离子,其中,复合催化剂包括多孔载体及负载在多孔载体的表面上和/或多孔载体的孔道内的微生物,微生物在厌氧条件或缺氧条件下对废水中的无机含氧酸根进行还原。本发明提供的电极负载有光催化剂和复合催化剂,该复合催化剂包含的多孔载体及负载在多孔载体上的微生物可以协同作用去除废水中的无机含氧酸根、金属离子;此外,光催化剂和复合催化剂也可以协同去除有机物,从而进一步提高废水的净化效果。
本发明属于铜、锌络离子废水废渣净化处理方法,它适用于电镀、表面处理、化工生产过程中的含焦磷酸盐、柠檬酸盐、草酸盐与羟基乙叉二膦酸盐为络合剂或螯合剂的铜、锌络离子废水废渣净化处理。它是对化学治理重金属离子废水的改进,具有沉淀完全,固液分离效果好,废水外排达标可靠,废渣进行闭路自循环处理,达到零排,无二次污染,工程投资与日常运转费用低,能简易可靠地回收金属纯铜粉或其它贵金属元素等特点。
本发明提供一种染料废水降解用催化剂,催化剂为活性炭负载铬酸盐类催化剂。应用本发明的催化剂,催化剂为活性炭负载铬酸盐类催化剂,组成了大比表面的AC与介电性能优异的铬酸盐类复合的微波催化剂,可充分发挥活性炭和铬酸盐的功能,实现废水的高去除率。本发明还提供一种上述催化剂的制备方法,步骤精简,工艺参数容易控制,适用于工业化。本发明还提供一种上述催化剂的降解废水的方法,能够极大地提高污染物的降解效率,且处理时间大大缩短,设备简单易操作,投资和运行成本低,占地面积少,降解彻底,可降解废水的浓度范围广,能够连续化规模化处理,易于工业化生产,无二次污染。
中冶有色为您提供最新的湖南有色金属环境保护技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!