本发明公开了一种用于难降解有机废水处理的高级氧化耦合装置及工艺,该装置主体包括臭氧氧化-多维电催化/微电解区和臭氧氧化-微电解/Fenton区、混凝区和斜板沉淀区;臭氧氧化-多维电催化/微电解区包括上部的多维电催化/微电解区及其下部的臭氧氧化区;臭氧氧化-微电解/Fenton区包括上部的微电解/Fenton区及其下部的臭氧氧化区;该装置将四级高级氧化体系完美结合,使电催化氧化、臭氧氧化、Fenton氧化及微电解反应在功能上进行相互耦合,将难降解有机物进行多级氧化,实现难降解有机物的彻底氧化裂解;通过该装置处理难降解有机废水时,提高了·OH的产量和产生速率,加速了液相传递过程,提升了装置的整体电流效率,节省了运行费用,并且实现了工艺单元的灵活调控,可处理各类难降解有机废水。
本发明公开了一种多单元协同预处理甲基硫菌灵生产废水的方法,包括:依次对甲基硫菌灵废水进行中和絮凝、催化湿式氧化、芬顿氧化和蒸馏处理,完成对甲基硫菌灵生产废水的处理。本发明方法,通过中和絮凝、催化湿式氧化、芬顿氧化和蒸馏处理,不仅能够完全去除废水中的硫代氨基甲酸酯、N,N‑二甲基苯胺,而且对甲基硫菌灵及其异构体的去除率>98%,COD的去除率>85%,可生化性大幅度提高,同时能够显著降低废水的色度和臭味,且所得馏分清亮无色无味,可多次回用,可显著改善周边环境,具有处理效果好、操作简单、便于工程运用且可减少废水排量、反应条件相对温和等优点,可广泛用于处理甲基硫菌灵生产废水,使用价值高,应用前景好。
本方案涉及废水处理领域,公开了一种废水监测设备、系统及方法,所述废水监测系统包含多个废水排放管组,每个管组中包括排放含有同类污染因子的多个分管和总管,并在总管和分管侧分别设置有总管监测设备和分管监测设备,在所述总管监测设备分析处理得到废水中含有的污染因子种类及含量时,由远程管理平台判断其是否发生混排,并在混排时,产生触发指令,以触发相应的所述分管监测设备,监测所述分管传输的废水样本,并在所述分管监测设备检测出所述废水样本中含有混杂的污染因子时,产生控制指令,以采取相应的处理,从而起到预防混排的目的。
本发明公开了一种利用氨法脱硫废水制备高纯亚硫酸铵的方法,该方法通过依次分离废水中不可溶性如悬浮物和沉淀物等杂质,而后通过添加可溶性亚铁盐实现分离可溶性如F‑、Cl‑、NO3‑、Fe3+、Cu2+、Hg2+、Pb2+、Na+、K+等杂质的目的,同时增加热处理、洗涤吸收、结晶干燥等步骤生成并进一步提高了亚硫酸铵产品的纯度,其工艺流程简单、资源回收利用率高,该方法使得氨法脱硫废水回收利用得到的亚硫酸铵的纯度达到99%以上,这对亚硫酸铵的应用有很大的效益。该方法同时还极大的降低了氨法脱硫废水的排放,低成本地实现了废弃资源的二次创新利用,降低了环境污染,提高了社会经济效益。
提供了一种铅锌矿选矿废水处理及回用技术,目的是解决选矿废水回用于生产,影响选矿指标,外排造成环境污染的问题。所述硫化铅锌矿选矿废水处理与回用新技术,是针对选矿厂总废水,采用调pH值,然后加入硫酸亚铁和絮凝剂进行氧化--混凝处理,处理水用二氧化氯进行氧化,再用活性炭床进行催化氧化和吸附,处理水达到国家有关排放标准;通过采用电位调控浮选、环保捕收剂组合应用,实现处理水全部回用,与现场工艺技术指标相比,取消了氰化物浮选工艺,提高铅回收率、锌、金的回收率。本发明为硫化铅锌矿选矿废水处理及回用提供了一整套电位调控浮选、环保捕收剂组合应用技术与废水处理工艺技术集成,实现选矿废水循环利用。
本发明公开了一种去除白钨矿选矿废水中可溶性二氧化硅的方法,包括以下步骤:(1)向待处理的白钨矿选矿废水中加入石灰搅拌后进行混凝沉降,得第一上清液;(2)向步骤(1)获得的第一上清液中加入氯化钙,搅拌溶解,并调节上清液至强碱性,使pH至11‑13,搅拌后静置沉淀,得第二上清液;(3)调节步骤(2)中的第二上清液的pH至中性,得到去除可溶性二氧化硅的处理水。本发明先向白钨矿选矿废水中加入石灰,可使废水中大部分可溶性二氧化硅和固体悬浮物发生混凝沉降,然后向上清水中加入氯化钙,并调节上清水的pH值,可对废水中剩余可溶性二氧化硅和难沉降微细悬浮颗粒进一步沉降,实现废水中可溶性二氧化硅的高效脱除。
本发明公开了一种1‑(4‑氯苯基)‑3‑吡唑醇生产废水的预处理方法,包括:将复合催化剂与1‑(4‑氯苯基)‑3‑吡唑醇生产废水混合,加热回流,进行催化氧化处理和曝气,完成对废水的处理,其中采用的复合催化剂由膨润土、活性炭、二氧化锰组成的混合物经硫酸锰溶液浸泡、煅烧后制得。本发明中,经复合催化剂处理后,废水的COD去除率>80%、TN去除率>90%,废水可生化性指标B/C值由0.05提高到0.4以上,预处理后废水经后续生化处理后可达标排放,而且催化氧化处理过程中不产生恶臭气体,不增加固废,无二次污染。本发明预处理方法具有工艺简单、操作方便、易于控制、处理成本低廉等优点,使用价值高,应用前景好。
本发明公开了一种镍钴冶炼重金属废水的处理方法,包括如下步骤:(1)气浮除油,废水中加入混凝剂进行气浮除油,脱除废水中的悬浮油和乳化油;(2)重金属脱除,废水中分别加入重金属处理剂、碱液和絮凝剂,脱除其中的重金属离子;(3)过滤,废水调酸后通过过滤单元,去除废水中的悬浮物;(4)树脂吸附,使用经过改性的大孔吸附树脂按特定流速对废水进行动态吸附,深度去除废水中残留的有机相COD;(5)树脂解吸,废水吸附至一定体积后用解吸液对特种吸附树脂进行动态解吸再生;(6)蒸馏,解吸液通过蒸馏进行回收再利用。本发明深度脱除废水中的COD及重金属离子等污染物,具有工艺稳定、适用范围宽、处理效果好的特点。
本发明公开了一种水合肼生产废水的处理方法,包括将水合肼生产废水引入纤维球进行过滤除杂,然后将废水进行树脂吸附去除大部分COD,再将吸附后的废水进行三相催化氧化,将废水中的COD、氨氮等降至排放标准以下。本发明的处理方法不仅解决了水合肼生产企业面临的废水难达标排放的问题,而且大大降低了废水的处理成本,同时实现了水合肼生产废水中的氯化钠的高回收利用,节约了资源,整套工艺不产生二次污染,污水处理效率高,且处理成本低。
一种高盐废水分步分离结晶回收及资源化的方法及系统,该方法包括以下步骤:1)分离得到氟氯废水:采用纳滤的方式对高盐废水进行过滤处理,得到过滤出的氟氯废水,过滤剩余部分为含硫酸根的杂盐废水;2)分离得到氟化物结晶:提高氟氯废水中氯离子的浓度,氟离子结晶析出得到氟化物结晶,剩余高氯混合溶液;3)浓缩得到饱和含氯溶液:对高氯混合溶液进行过浓缩处理,得到饱和含氯溶液和氟氯混合物;4)获取氯化物结晶盐:将饱和含氯溶液结晶处理得到氯化物结晶盐。本申请提供的技术方案,能够减少沉淀剂的投入,操作简单;能够极大的提高针对高盐废水的氟氯分离的效果。
本发明提供了一种贵金属冶炼废水中砷镉分离资源回用的处理方法,包含以下步骤:向废水中加入活化剂进行活化,再向活化后的废水中加入硫化剂除砷并过滤,最后向过滤后的废水中再次加入硫化剂除镉,其中,活化剂为硫酸、二氧化硫和亚硫酸中的一种或多种,活化剂还可以为亚硫酸盐,硫化剂为硫化氢或硫化钠。本发明解决了传统工艺处理方法中,危废渣的处理成本高和废水中的有价资源难以回收利用的问题,使废水中的有价金属资源得以有效富集回用,本发明所提供的方法工艺简单,各步骤易于控制,实现了渣量减量化和对高砷高镉废水的有效处理。
本发明提供一种含氨氮的废水处理系统,包括曝气降解塔以及超声混合器,所述超声混合器包括混合容器和超声波发生器,所述混合容器上包含废水入口、臭氧入口和废水出口;超声混合器中排出的废水直接或间接进入曝气降解塔中,曝气降解塔自上而下依次包括出气孔、抽风机、分水器、氧化反应段以及曝气盘,曝气盘外接臭氧源用于向曝气降解塔中提供臭氧,分水器与曝气降解塔的进水管连接用于向曝气降解塔中提供废水,在曝气降解塔中废水自上而下且臭氧自下而上流动,且二者在氧化反应段中发生化学反应生成氮气,抽风机将曝气降解塔中产生的氮气抽出并从出气孔处排出曝气降解塔外。本发明使得废水中氨氮的处理效率进一步提高。
一种酸性洗涤废水结晶回收氯盐方法及系统,该方法包括:1)对酸性烟气洗涤废水进行废水预处理,得到除杂废水清液;2)对除杂废水清液进行铁碳微电解处理,得到待氧化废水;3)先对待氧化废水进行氧化处理,再向经过氧化处理后的废水中加入碱剂调节呈弱碱废水,加入固体吸附剂,得到含氨废水和金属污泥;4)先向含氨废水中加入碱剂调节呈强碱废水,再通入物理脱氨装置进行除氨处理,得到含氨产物和高盐废水;5)对高盐废水进行MVR蒸发结晶处理,得到固体氯盐和杂盐母液。本申请提供的技术方案通过铁碳微电解、氧化、弱碱吸附、结晶的组合方法优化制酸废水工艺,实现氨氮清洁深度去除,减少碱剂的使用,降低生产成本,回收高浓度氯盐。
细菌处理高浓度碱性含铬废水的方法。本发明将 Ch-1菌株与碱性含铬废水一起加入到生化反应池进行生化反 应,经过曝气好氧反应后,废水中Cr(VI)全部转化为Cr(III)并 形成Cr(OH) 3沉淀,将沉淀物打 入压滤机过滤,滤液菌体可替代培菌池中细菌回用进一步处理 碱性含铬废水,滤渣回收。本发明具有净化率高、运行费用低 及操作简单等特点,可直接处理各类高浓度(含Cr(VI)小于 2000mg/L)碱性(pH 9-11)含铬废水或铬渣渗滤液,能弥补当前 细菌处理含铬废水仅限于酸性或中性介质,以及厌氧处理含铬 废水效率低、时间长的不足;利用Ch-1菌株,将高浓度碱性 含铬废水处理成易于回收的Cr(OH) 3。
本发明公开了一种巯基杂环类化合物生产过程中的高浓有机废水的预处理方法,该方法是将巯基杂环类化合物生产过程中的成分复杂、有机物浓度高的废水依次采用铜盐沉淀法去除有机废水中残留的巯基杂环类化合物,通过吹脱法去除有机废水中的氨氮,采用亚铜盐还原液相沉淀法去除有机废水中的硫氰酸根,以及通过Fenton反应氧化降解有机废水中的残余有机物。该方法实现了大幅度降低废水中COD、NH3‑N和SCN‑的含量的目的,解决了巯基噻唑和巯基氮唑合成过程产出的生产废水中COD浓度大、有害组分多,难以处理的难题,为后续的生化处理过程提供了基础。
本发明公开了一种高盐、高钙废水除钙的方法,包括步骤:(1)调节高盐、高钙废水pH至5~6,过滤后收集滤液;(2)将滤液放置电渗析,按浓淡室体积比1:0.5~3,接通电源,将高盐、高钙废水进行淡化。(3)将浓液转移至冷却结晶器中进行诱导结晶,得到高纯度硫酸钙晶体。(4)冷却结晶后的上清液返回电渗析继续进行循环淡化,所得淡液硬度≤10mg/L,实现废水资源回收利用。本发明工艺简单,稳定可控,易于操作且占地小,成本低,特别适合高盐、高钙废水的处理,具有很好的应用前景。经实验证明,废水经过脱钙处理后,80%以上的废水可实现资源化,同时所得硫酸钙晶体纯度≥99%。
本发明公开了一种通过磨矿机械化学调控处理含铜废水的方法,包括如下步骤:将天然硫化矿进行破碎,使其表面产生具有活性的硫化位点,得到矿物基硫化剂;将含铜废水的pH调节至酸性,再加入次氯酸钠和过氧化氢进行氧化破络;将矿物基硫化剂与氧化破络后得到的含铜废水加入到球磨机中进行共磨反应;得到的反应混合液进行重力沉降,再进行抽滤分离,得到净化液和硫化铜沉淀。本发明有效的利用了天然硫化矿中的硫资源与含铜废水中铜进行共磨反应,从而实现了高效去除废水中的重金属铜,同时天然硫化矿由于价格便宜,也大大降低了废水处理的成本。
一种酸性烟气洗涤废水清洁回收氯化钙方法及系统,该方法包括以下步骤:1)对酸性烟气洗涤废水进行废水预处理,得到除杂废水清液;2)向除杂废水清液中加入可溶性亚铁盐、可溶性亚硫酸盐,然后通过分离除去亚硫酸亚铁沉淀物,得到除铵废水清液;3)沉淀金属离子:对除铵废水清液进行氧化处理,向溶液中加入氧化钙或氢氧化钙,通过分离除去絮凝沉淀得到待析出废水;4)析出氯化钙:将待析出废水经过干燥处理得到含氯化钙结晶盐。本申请提供的技术方案,能够在大幅减少碱耗的前提下,实现氨氮的回收,降低运行成本;能够回收氯化钙结晶盐,避免杂盐二次污染;能够在中性条件下除去金属元素,避免消耗烟气中的硫,降低结晶盐硫酸盐含量;提高回收的结晶盐中氯化钙的浓度。
本发明公开了一种肟菌酯生产废水的预处理方法,包括以下步骤:按产生比例混合各股废水获得肟菌酯生产废水;将肟菌酯生产废水依次进行加热回流碱解、芬顿氧化和二氧化氯氧化,完成对肟菌酯生产废水的预处理。本发明预处理方法,采用“加热回流碱解+芬顿氧化+二氧化氯氧化”组合工艺处理肟菌酯生产废,使得废水CODcr浓度、氨氮、总氮、二价铜离子及色度均达到了进入厂区生化系统的标准,其中CODcr、总氮、氨氮、二价铜离子的去除率分别达到91.31%、93.50%、98.29%、99.59%,可生化性由0.09提高到0.41,具有高效、运行成本低、易操作、便于工程化应用等优点。
本发明涉及一种黄铁矿处理含铅废水的方法,将黄铁矿进行破碎,然后进行粉磨,再用去离子水进行洗涤;将洗涤后的黄铁矿溶于硫酸溶液中,得到沉淀溶剂;将含铅废水放入搅拌池中;向所述搅拌池中加入稀硫酸进行调节pH值;向废水中加入所述沉淀溶剂,并用电动搅拌机进行搅拌;将得到的废水通入沉淀池中进行沉淀,然后进行过滤,得到沉淀污泥;将所述沉淀污泥放入焙烧室进行焙烧,将焙烧后的固体溶于硝酸中,得到初级溶液;将所述初级溶液进行萃取、反萃、蒸发结晶,得到结晶物;将所述结晶物与碳粉进行混合,再放入电炉中进行焙烧,并将产生的气体排走,最终得到金属铅。本发明工艺简单,反应条件容易达到,反应也易控制,处理废水量大。
本发明公开了一种基于迁移学习的重金属废水处理过程异常工况智能化监测方法、装置及存储介质基于迁移学习的重金属废水处理过程异常工况智能化监测,通过对不同来源的重金属废水处理过程数据融合,能够自动的实现不同来源的重金属废水处理过程异常工况智能识别;具体为利用来源固定的重金属废水处理过程的正常样本YSD、少量来源未知的重金属废水处理过程的正常样本YTD;首先通过对YSD进行学习得到其数据表示字典DSD,然后考虑到YSD和YTD分布不同,采用迁移学习的方法,将YTD的特征融入到字典学习过程,得到泛化能力更强的字典DTD。该方法无需过程先验知识,能自适应的适应废水处理系统中的不确定性因素,能够更加准确的检测过程中相关指标的变化,实现及时地检测与预警。
本发明公开了一种超滤膜强化超滤处理含苯酚废水的方法,先将阳离子表面活性剂十六烷基氯化吡啶和碳酸钠加入到含苯酚废水中,搅拌均匀静置反应,十六烷基氯化吡啶单体分子自组装生成胶团后增溶水中苯酚;再由泵送至超滤膜组件进行过滤,增溶了水中苯酚的十六烷基氯化吡啶胶团被超滤膜截留,以去除水中的苯酚;其中废水中苯酚浓度为5mg/L~200mg/L,十六烷基氯化吡啶的添加量为20×10-3mol/L~30×10-3mol/L,碳酸钠的添加量为1×10-3mol/L~20×10-3mol/L;超滤膜截留分子量为6000~10000Dalton,膜操作压力为0.05MPa~0.20MPa,间歇式运行,静置反应时间为0.5~10h。本发明处理含苯酚废水,对苯酚的去除效果好,能耗低,操作简单,表面活性剂用量少,成本低且表面活性剂和苯酚可回收。
本发明公开了一种制钒的氨气回收制铵和废水循环使用的工艺,传统的提钒工艺程序复杂,且最难控制和处理的就是氨气排放和废水处理。本工艺可从采矿冶炼开始直接提取偏钒酸铵及多钒酸铵;在用偏钒酸铵或多钒酸铵制成高纯五氧化二钒过程中,可集束排放的全部氨气制成铵使用,确保废气零发放;采用多酸酯絮凝技术,使上述过程产生的全部废水得到有效处理,确保废水零排放,循环使用,且所有产品的纯度达到99.5‑99.99%。
本发明公开了一种高浓度氨氮废水的处理工艺,包括以下步骤:(1)将高浓度氨氮废水进行预处理;(2)将预处理后的氨氮废水先换热处理,再增浓升温处理;(3)采用汽提蒸汽对增浓升温后的氨氮废水进行汽提处理,得到含氨蒸汽和脱氨废水;(4)将含氨蒸汽部分送至步骤(2)的增浓升温处理中,对经换热处理后的氨氮废水进行增浓升温,将另一部分含氨蒸汽进行冷凝,所得冷凝液部分回流至步骤(3)所述汽提处理中,另一部分冷凝液作为氨水成品进行储存。本发明的处理工艺步骤简单、设备投资少、氨氮脱除效率高、氨氮废水处理的蒸汽单耗低、可实现一次处理即可达标排放、且可回收具有经济价值的成品氨水。
本发明公开了一种槟榔泡制和蒸煮生产废水的处理方法,首先对废水进行除杂,然后以FCM-III铁碳微电解技术进行预处理;通过微电解后再利用曝气氧化、絮凝、气浮技术进行渣液分离;然后采用“UASB+MBBR+缺氧+好氧”的工艺对废水进行后续处理。本发明实现了对废水的完善处理,各项指标均达到要求。
本发明公开了一种生物制剂制备方法和处理含铊废水的方法,将氧化亚铁硫杆菌、氧化硫硫杆菌的复合菌群在9K培养基中加入锰盐驯化培养5~15天,Mn2+加入量为1~5g/L,培养过程中保持曝气,培养后即得到用于废水除铊的生物制剂。通过该种生物制剂处理含Tl废水时,功能基团上嫁接的Mn2+被Tl离子部分替代,后续Tl可与Mn一起混凝沉淀。相较于传统除Tl方法利用Tl离子的价态来进行除铊,本发明制备的生物制剂对Tl的离子价态无要求,适应不同种类的含铊废水,具有药剂加量少、反应温和、Tl含量≤2μg/L等优点。
本发明公开了一种电镀废水回用及零排放的处理系统,其包括控制系统、预处理系统、污泥系统、膜系统和蒸发结晶系统;所述预处理系统包括调节池、破氰槽、pH调节槽和/或还原槽;所述污泥系统包括污泥池、压滤机和地面废水调节池;所述膜系统包括循环槽、DF膜系统、缓冲槽、RO膜系统、回用水池;所述蒸发结晶系统包括浓水池、蒸发器、结晶器、离心机等。本发明还公开了一种电镀废水回用及零排放的处理方法,包括预处理、固液分离、浓缩、蒸发结晶等步骤。本发明将“化学预处理+膜系统+蒸发”工艺进行有效组合,实现电镀废水回收,同时利用“蒸发浓缩”工艺处理膜产生的浓水,使电镀行业实现真正的废水零排放。
一种工矿废水高效净化和循环利用装备,包括杂物粉碎装置、废水高效净化装置和循环利用装置,所述杂物粉碎装置与废水高效净化装置相连通,所述废水高效净化装置与循环利用装置相连通;所述杂物粉碎装置包括杂物粉碎室、动力装置、杂物粉碎器和筛网;所述废水高效洁净化装置包括高效混凝室、旋流絮凝室、沉降过滤室和混凝剂加药装置;所述循环利用装置包括重金属沉降过滤室和重金属离子去除剂加药装置。利用本实用新型能有效解决工矿废水的污染问题,具有高效、投资低等优点。
本发明公开了一种黑河道暴气及废水再利用设备,包括废水池和外部控制箱,废水池的左侧设置有外部控制箱,外部控制箱与废水池紧密连接,外部控制箱的内部设置有水位显示屏,水位显示屏嵌入设置在外部控制箱中。水位显示屏的右下方设置有水位报警器。该种黑河道暴气及废水再利用设备,第一水管的右侧设置有过滤器,过滤器的一端与第一水管紧密连接,另一端与水泵紧密连接,设置有过滤器能使得第一水管内部废水中的杂物和颗粒状物质过滤掉,使得废水处理效果大大提高了,废水池中的废水能通过水泵的作用,将废水输送到回收池进行再次利用,不仅结构简单,易于实现,而且能节约成本并保护了坏境不受破坏。
一种高盐废水资源化回收方法,包括以下步骤:1)采用电吸附的方式将高盐废水中的氟离子和氯离子吸附到阳极吸附棒上,剩下以硫酸根为主的含硫酸根的杂盐废水,再将阳极吸附棒解吸得到氟氯废水;2)对氟氯废水加氯处理,提高氟氯废水中氯离子的浓度直至氯离子过饱和,氟离子和氯离子结晶析出得到氟氯混合物结晶,剩余饱和含氯溶液;3)将饱和含氯溶液结晶处理得到氯化物结晶盐;4)溶解氟氯混合物结晶得到含氟氯混合溶液,随着多次溶解和外加氟化物,并通过分离得到氟化物结晶。本申请提供的技术方案,能够减少了额外沉淀剂的投入,简化工艺流程,能够极大的提高针对高盐废水的氟氯分离的效果。
中冶有色为您提供最新的湖南长沙有色金属环境保护技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!