合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 新能源材料技术

> 时空气象特征提取与深度学习的风电功率预测方法

时空气象特征提取与深度学习的风电功率预测方法

1069   编辑:管理员   来源:中冶有色技术网  
2023-03-18 20:19:42
本发明公开一种时空气象特征提取与深度学习的风电功率预测方法,首先基于广域时空气象数据和功率数据,研究新能源场站出力和天气过程的互相关特性,建立不同指标为依据的多层级子区域划分,然后基于多维度气象数据,构建高维度候选特征库,构建基于数据挖掘的复合气象特征,最后基于海量样本和优选的核心特征,构建基于高维深度特征映射和高维深度数据挖掘、面向多层级的深度学习模型库,选取最优模型进行集群功率预测。通过该方法预测,实现了对风电功率在时空复合数据下的预测,在时域数据和空间数据之间建立了有效的匹配关系,具有推广价值。
声明:
“时空气象特征提取与深度学习的风电功率预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
标签:
新能源
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记