本发明提供一种含多孔聚苯胺/还原氧化石墨烯的钴硫储氢复合材料及其制备方法,它是要解决现有钴硫合金的储氢性能差,放电容量低的技术问题,属于储氢材料领域。该储氢复合材料表达式为:Co9S8+xwt%NPC/rGO,其中,3≤x≤10。该制备方法包括如下步骤:(1)球磨法制备钴硫合金,(2)水热法制备多孔聚苯胺/还原氧化石墨烯复合材料,(3)钴硫合金掺杂多孔聚苯胺/还原氧化石墨烯复合材料。实验结果表明:通过添加多孔聚苯胺/还原氧化石墨烯复合材料能够大幅提高钴硫合金的能量密度和循环稳定性,使得该合金用于镍氢电池时具有良好的储氢性能、较高放电容量以及较长的使用寿命。
本发明适用纤维增强复合材料技术领域,提供一种碳纤维增强聚醚醚酮基复合材料及其制备方法,所述碳纤维增强聚醚醚酮基复合材料包括以下组分:碳纤维纱线、长碳纤维和聚醚醚酮纤维;本发明实施例根据异色瓢虫前翅的结构模型,设计了一种与其结构相似的碳纤维增强聚醚醚酮基复合材料,旨在提高聚醚醚酮基体的力学性能,尤其是Z轴方向的力学性能;解决了如何在复合材料中有效模拟絮状填充物以及小柱结构并使其发挥提高力学性能的效果的问题。
本发明涉及一种高效阻隔聚对苯二甲酸乙二醇酯复合材料及其制备方法,属于复合材料技术领域。解决了现有技术中聚对苯二甲酸乙二醇酯复合材料阻隔性差的技术问题。本发明的复合材料,由75‑85重量份聚对苯二甲酸乙二醇酯、4‑7重量份结晶成核剂、15‑20重量份乙烯‑乙烯醇树脂、1‑2重量份抗水解稳定剂、1‑1.5重量份有机膨润土、2‑3重量份层状硅酸盐、4‑6重量份硬脂酸钙、2‑3重量份马来酸配接枝聚丙烯、3.5‑5.5重量份氧化铝溶胶、2‑2.5重量份偶联剂和0‑1.5重量份抗氧剂组成。该复合材料具有优异的气体阻隔性,经试验检测:氧气透过量为0.003‑0.013cc/day·Pkg,水蒸气透过率为0.5‑1.3g/m2·day。
本发明公开了一种纤维增强复合材料的制备方法,属于复合材料技术领域,解决采用玄武岩纤维制备纤维增强复合材料时粘合力差,抗拉力不好等技术问题。本发明提供的纤维增强复合材料的制备方法,采用醋酸预处理、钛酸酯偶联剂以及纳米Al2O3和钛酸酯偶联剂共同改性处理玄武岩纤维,最后得到的纤维增强复合材料,切断样品规格为300.0mm×300.0mm,采用现有技术检测,抗拉强度都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa,亦高于钢,比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上。
本发明提供了一种碳钠米点的制备方法,包括:将柠檬酸和尿素在溶剂中混合后加热,得到反应溶液;将反应溶液进行离心分离,得到的沉淀物即为碳钠米点;所述溶剂为水、甘油和二甲基甲酰胺中的一种或两种。本发明通过采用不同的溶剂制备得到可见光全波段发光的碳钠米点,能够使本发明提供的碳钠米点复合材料在可见光全波段发光,尤其是采用不同颜色的碳钠米点能够得到不同色坐标以及色温的白光碳钠米点复合材料。而且,本发明提供的碳钠米点复合材料以二氧化硅为分散基质,能够抑制聚集诱导荧光猝灭,这种复合材料具有较高的量子效率。本发明还提供了一种碳纳米点的制备方法、碳纳米点复合材料及其制备方法和发光LED。
本发明提供了一种碳纤维复合材料杆接头,包括底座、传力瓦片,所述底座包括法兰,设置在所述法兰上的中心筒,以及对称设置在所述中心筒外壁的至少两个径向分隔板,所述复合材料杆上设有与所述分隔板间隙配合的切槽,所述切槽穿过所述分隔板,使得复合材料杆的内壁与中心筒的外壁间隙配合,所述传力瓦片设置在两个分隔板之间,用于挤压、固定所述复合材料杆,且所述传力瓦片的个数与分隔板的个数相同。本发明的复合材料杆与底座通过分离的传力瓦片粘接成一体,粘接过程中胶层对装配应力具有适应性,固化后复合材料杆与底座的装配应力小,整体结构稳定性高。
本发明提供了一种无机‑无机核壳粒子及其制备方法和应用、高性能聚合物基复合材料,属于聚合物基自润滑复合材料技术领域。本发明将二维片层材料石墨相氮化碳和微纳米粒子(中间相炭微球或碳纳米球)形成无机‑无机核壳粒子,一方面解决了单一填料只能提高高性能聚合物摩擦学某一性能的问题,另一方面无机‑无机核壳粒子在聚合物基体的填充量适中,在一定程度上能够提高复合材料的机械性能,避免了因填料过多而使复合材料机械性能降低的问题,所得复合材料具有优异的耐磨性和自润滑性。
本发明公开一种低VOC的麻纤维复合材料制备方法,其特征在于,一种低VOC的麻纤维复合材料由麻纤维与聚丙烯所组成,麻纤维与聚丙烯的质量比为:麻纤维50%,聚丙烯50%,其制备方法,包括偶联剂溶液配置、偶联剂溶液喷淋以及复合材料成型。本发明的提供一种低VOC的麻纤维复合材料制备方法,其利用偶联剂对麻纤维及聚丙烯纤维进行改性,降低了复合材料中VOC的产生量和挥发量,增大了麻纤维增强聚丙烯复合材料在汽车内饰上的使用范围。
本发明提供一种透明高电活性聚偏氟乙烯基复合材料及其制备方法,属于高分子材料及先进纳米复合材料领域。该复合材料是将聚偏氟乙烯、离子液体和粘土按质量比为100:0.05‑10:0.01‑3共混后得到的。本发明还提供一种透明高电活性聚偏氟乙烯基复合材料的制备方法。本发明的复合材料具有高的透过性和100%的极性晶体;除此之外,粘土可以抑制离子液体在电场下的迁移,降低复合材料的介电损耗,这拓宽了其作为压电材料的应用。
本发明公开了复合材料包裹的十二直角截面薄壁梁压溃特性分析方法,为克服车身抗撞性概念设计阶段由于缺乏详细结构的几何模型而无法使用有限元方法或试验方法进行薄壁梁压溃性能分析的问题,步骤:1.推导无复合材料包裹的中空十二直角薄壁梁平均压溃反力解析表达式;2.简化纤维增强复合材料应力应变曲线:拉伸时,应力应变关系表现为线性,直到拉断为止;压缩时,屈服之后应力维持某一水平不变;3.计算纤维增强复合材料包裹的十二直角截面薄壁梁的塑性极限弯矩和极限屈服膜应力;4.修正纤维增强复合材料包裹的十二直角截面薄壁梁的有效压溃距离和最终折叠角度;5.推导纤维增强复合材料包裹的十二直角截面薄壁梁平均压溃反力解析表达式。
本发明涉及特种工程塑料技术领域,尤其涉及一种双网络聚醚醚酮复合材料及其制备方法和应用。本发明提供的双网络聚醚醚酮复合材料,包括聚醚醚酮/多壁碳纳米管复合材料和石墨烯纳米片;所述聚醚醚酮/多壁碳纳米管复合材料为多壁碳纳米管分散在聚醚醚酮中;所述聚醚醚酮/多壁碳纳米管复合材料分布在所述石墨烯纳米片构成的网络结构中。根据实施例的记载,本发明所述的双网络聚醚醚酮复合材料具有良好的导热率。
本发明提供了一种纳米生物玻璃颗粒、其与聚酯的复合材料及制备方法。该纳米生物玻璃颗粒,表面接枝聚乳酸;在干燥氮气或氩气保护、加热和搅拌的条件下,以有机锡类化合物为催化剂,将聚乳酸分子链端的羟基转换为异氰酸酯基,得到的异氰酸酯基封端的聚乳酸与纳米生物玻璃表面的羟基发生反应,偶联在纳米生物玻璃的表面,得到表面接枝有聚乳酸的纳米生物玻璃颗粒。还提供了纳米生物玻璃颗粒与生物可降解聚酯的复合材料及其制备方法。将纳米生物玻璃颗粒或者表面接枝有聚乳酸的纳米生物玻璃颗粒通过溶剂法或母料法与可生物降解聚酯混合,得到既具有良好的可生物降解性、生物相容性、优异的机械加工性能,又具有较高机械性能的生物玻璃聚酯复合材料。
本发明提供了一种纤维螺旋铺排仿生抗冲击复合材料及其制备方法,包括:若干纤维铺层组,每个纤维铺层组均包括若干纤维层,若干纤维铺层组沿铺层方向呈周期性螺旋铺排,相邻纤维铺层组间具有周期性变化的螺旋转角,同一纤维铺层组中各个纤维层间具预设角度差异。本发明的复合材料由于相邻纤维铺层组以及同一纤维铺层组内纤维层间的铺层角度差异,当复合材料受到外界冲击载荷时,纤维铺层组的旋转,同一纤维铺层组内纤维滑移、纤维桥接、纤维拉伸吸收了冲击能量,有效阻止了裂纹在纤维层间的扩展,同时纤维铺层组周期性变化的螺旋转角,满足了纤维铺层设计中的对称性准则,有效解决了传统纤维复合材料铺层角度单一,层间抗冲击韧性不足的难题。
本发明属于完全生物降解的脂肪族聚酯复合材 料及其制备方法。在完全生物降解的脂肪族聚酯中加入廉价的无机填料CaCO3进行高填充,采用挤出、模塑、注射、纺丝的加工工艺,提供多种完全生物降解的脂肪族聚酯复合材料,制备的复合材料可与环境完全同化,而且其废弃物不会对环境造成任何污染,这种复合材料有利于在农用产品、食品包装和日常用品的加工成型。
本发明的一种石墨烯和碳纳米管复合材料的制备方法,属于纳米材料制备技术领域。首先通过磁控溅射方法在干净的衬底上制备过渡层和催化剂;然后将镀有过渡层和催化剂的衬底放入等离子体增强化学气相沉积设备中,通入保护气体并对衬底程序加热,再通入甲烷进行反应,制得石墨烯和碳纳米管的复合材料。本发明利用化学气相沉积法在催化剂衬底上一步合成石墨烯和碳纳米管复合材料,这种制备方法具有操作简单,生长速率适当,可以在不同尺寸基片上沉积样品,沉积温度较低等优良的特点;所制备的复合材料均匀,场发射性能优异。
本发明涉及一种铝铁共掺杂磷化钴纳米粒子/石墨烯复合材料的制备方法及应用。在两种不同类型的表面活性剂协同作用下,通过结合水热法和磷化处理,成功制备了铝铁共掺杂磷化钴纳米粒子/石墨烯复合材料(Al,Fe‑codoped CoP/RGO)。具体的制备过程如下:a、制备氧化石墨;b、合成前驱体层状CoAlFe双氢氧化物/氧化石墨复合材料(CoAlFe LHD/GO);c、将CoAlFe LHD/GO进行磷化处理,即可得到Al,Fe‑codoped CoP/RGO复合材料。该复合材料表现出优异的双功能电催化活性。本发明还可以拓展到其它催化剂的设计,为发展高效、低成本的催化剂提供了新的思路。
本发明属于复合材料技术领域,具体涉及一种可吸收自增强复合材料及其制备;具体为镁或其合金粉末与生物陶瓷粉末及可吸收聚酯粉末混合的复合材料及其制备,是一种通过物理机械混合得到的复合材料,其制备过程简单,效率高,可以实现产量化,且得到的复合材料可以采用模压、机械加工等方式制备出相应形状的医用器件。
本发明公开了一种玉米秸秆纤维增强PBS秸塑复合材料及其制备方法,属于生物可降解复合材料技术领域。解决了现有木塑复合材料木材短缺和秸秆焚烧带来的环境问题。该复合材料按重量百分比计,包括:60‑95%聚丁二酸丁二醇酯(PBS),40‑5%改性玉米秸秆纤维(MCSF),0‑1%润滑剂,0‑1%抗氧剂。本发明的玉米秸秆纤维增强PBS复合材料安全无毒、可生物降解且机械性能优异,可应用于包装、家具、航空航天、各类板材、汽车内饰和建筑材料等领域中,具有良好的市场前景。
本发明提供一种复合材料底架固定铰安装结构及其制造方法,底架包括底架上蒙皮、底架下蒙皮和设置在上下蒙皮之间的泡沫材料,底架上蒙皮、底架下蒙皮和泡沫材料共固化为一体,底架端部设有固定铰安装结构,所述固定铰安装结构包括设置在上下蒙板之间的复合材料空腔,复合材料空腔端部设有安装固定铰的法兰板和固定铰安装座,固定铰安装座固定连接在法兰板上,法兰板固定连接在底架端部,复合材料空腔在法兰板内侧,法兰板和复合材料空腔侧面对应位置上设有安装固定铰的孔组,复合材料空腔作为安装固定铰的操作空间,可以很好的满足固定铰安装的空间要求以及强度、刚度等要求。
本发明提供硒化锰/还原氧化石墨烯纳米复合材料制备方法及其应用。先以锰粉、硒粉为原料,采用直流电弧法制备出硒化锰纳米颗粒,再将均匀混合的硒化锰纳米颗粒与氧化石墨烯悬浊液冷冻干燥,然后将其在5%NH3/Ar混合气体氛围中煅烧,即可得硒化锰/还原氧化石墨烯纳米复合材料。本发明还公开了其在超级电容器方面的应用,将硒化锰/还原氧化石墨烯纳米复合材料涂覆在泡沫镍上,在1A/g的电流密度下,其质量比电容为176.6F/g。
本发明公开了一种聚晶立方氮化硼/金刚石复合材料,是由聚晶立方氮化硼、金刚石颗粒和结合剂8组成,本发明的复合材料,创新性地将聚晶立方氮化硼作为金刚石复合材料的胎体材料,复合材料胎体硬度和耐磨性得到了显著提高,应用于金刚石工具,可以提高坚硬材料加工效率以及坚硬岩层的钻进效率,立方氮化硼微粉、金刚石颗粒和结合剂粉末采用高温高压烧结工艺制备而成,这种金刚石复合材料采用聚晶立方氮化硼作为胎体材料,金刚石包镶在其中,作为硬质点和耐磨相,这种复合材料结构致密,其胎体具有较高的硬度、耐磨性及综合性能,使用这种复合材料制成的金刚石工具可以提高坚硬材料的加工效率以及坚硬岩层的钻进效率。
一种氰酸酯树脂基近零膨胀复合材料桁架杆及其制备方法,属于复合材料技术领域。解决了现有技术中热膨胀系数10‑6/K量级的碳纤维复合材料已经满足不了空间站桁架组件要求的问题。本发明的制备方法先根据待制备的桁架杆的厚度和单层铺层厚度范围,确定总铺层数,采用Ansys优化模块,以热膨胀系数和轴向模量为目标函数,获得每层铺层的材料和每层铺层角度;然后采用干法铺放预浸料及湿法缠绕纱片相结合的工艺进行桁架杆的成型;最后对成型的桁架杆依次进行加压固化、冷却、脱模、真空除气、热循环,得到复合材料桁架杆。该复合材料桁架杆力学性能优良,吸湿率低,尺寸稳定,能够满足空间站光学设施的尺寸稳定性要求。
本发明涉及电池材料技术领域,具体涉及锰酸锌纳米粒子碳布复合材料及其制备方法和锂离子电池。锰酸锌纳米粒子碳布复合材料的制备方法,具体包括:将碳布用浓硝酸浸泡后加热反应获得预处理碳布,并采用有机溶剂和水进行超声处理后干燥获得活化碳布;将锌盐、锰盐、柠檬酸和十六烷基三甲基溴化铵溶于无水乙醇中,搅拌反应获得混合溶液;将活化碳布加入至混合溶液中,静置并在加热反应获得锰酸锌纳米粒子碳布复合材料粗品,进行清洗处理并干燥获得锰酸锌纳米粒子碳布复合材料。该制备方法成本低、重复性好,工艺简单,且获得复合材料具有良好的附着力和电子导电性,同时能够有效的避免纳米粒子的团聚,增加循环稳定。
本发明涉及一种用于近红外光激发下具有肿瘤光动力学治疗性质的硫化铋‑锌原卟啉复合材料及制法和应用,属于复合材料领域。解决硫化铋在光动力学治疗时光生电子‑空穴的复合以及细胞中血红素氧合酶(HO‑1)的、抗氧化应激能力导致PDT效率较低的问题。所述复合材料是通过合成聚N‑异丙基丙烯酰胺‑丙烯酰胺共聚物修饰的硫化铋纳米材料,然后利用羧基和氨基的缩合反应合成的硫化铋‑锌原卟啉复合材料。制备的复合材料通过抑制血红素氧合酶活性和促进电子‑空穴分离两种途径增强光动力学治疗效率,同时上述材料具有良好的生物兼容性、光稳定性、CT成像能力以及增强的PDT效率,为新型纳米诊疗一体化系统的设计提供了思路,对癌症早期诊断与治疗有重要意义。
本发明提供了一种生物可降解PBS/芦苇秸秆复合材料及其制备方法,属于高分子材料技术领域。该复合材料按重量百分比计,包括:5%~30%芦苇秸秆和95~70%PBS树脂,所述的芦苇秸秆是经过碱液和硅烷偶联剂共同处理的。本发明还提供了一种生物可降解PBS/芦苇秸秆复合材料的制备方法及其应用。本发明的PBS/芦苇复合材料质轻、具有良好的力学性能和加工性能,用途极为广泛,可用于包装、餐具、化妆品瓶及药品瓶、一次性医疗用品、汽车内外饰、生物医用高分子材料等领域。采用本发明制备出的PBS/芦苇秸秆复合材料在保留可降解特性的同时,制备方法简单、生产工艺易于实施、环保节约。
本发明公开了一种增强增韧的聚乳酸复合材料及其制备方法,解决了现有PLA韧性提高的同时,强度和刚性明显降低的技术问题,属于生物降解高分子材料制备技术领域。该复合材料仅包含聚乳酸和填料组分,没有增塑剂和增韧剂等组分的加入,共混组分少,原材料成本较低,强度和韧性却可以同时显著提高。该复合材料由熔融共混模压成型后经单向拉伸的方法制备而成,单向拉伸倍率较低时就可以获得同时具有高强度、高模量、高韧性的聚乳酸复合材料,制备过程简单、清洁环保。此外,该复合材料具有生物降解的环保性能,有利于聚乳酸的广泛应用。
本发明提供一种低介电常数POSS/聚氨酯复合材料薄膜及其制备方法,属于高分子材料技术领域。该复合材料是由具有式Ⅰ结构的POSS和具有式Ⅱ结构的聚氨酯组成。本发明还提供一种低介电常数POSS/聚氨酯复合材料薄膜的制备方法。该方法先将八苯基POSS溶于溶剂中,得到八苯胺基POSS溶液;然后将聚氨酯加入到八苯胺基POSS溶液中搅拌,得到混合溶液,将混合溶液倾倒于玻璃板上,然后将玻璃板移入真空烘箱中烘干,得到低介电常数POSS/聚氨酯复合材料薄膜。本发明的复合材料具有较低的介电常数和较好的机械性能。
本发明提供了一种电缆槽用复合材料、制备方法及其电缆槽,本发明提供的电缆槽用复合材料,包括:玄武岩纤维、树脂和辅料;所述玄武岩纤维在所述复合材料中的质量百分含量为20wt%~55wt%,其中,通过选择一定含量的玄武岩纤维作为复合材料的增强体使得制备得到的复合材料不仅耐酸碱性增强,而且具有很好的抗疲劳性能,进而延长了其使用寿命。
硼酸聚芳醚酮改性硼酸铝晶须增强聚醚醚酮复合材料及其制备方法,属于高分子及其复合材料领域,具体涉及硼酸铝晶须增强聚醚醚酮(PEEK)复合材料、一种含硼酸聚芳醚酮偶联剂及用其改性硼酸铝晶须进而得到硼酸聚芳醚酮改性硼酸铝晶须增强聚醚醚酮复合材料及其制备方法。所述的硼酸聚芳醚酮改性硼酸铝晶须增强聚醚醚酮复合材料,按各组分和100.0wt%计算,含64~93wt%聚醚醚酮树脂、2~6wt%硼酸聚芳醚酮偶联剂和5~30wt%硼酸铝晶须增强材料。将其经高温注射机塑化熔融、注射、充模、冷却定型、脱模得到模具型腔形状和尺寸的各种制品,可以广泛地应用在航空航天、武器装备和其他民用高技术领域,诸如耐高温接插件、各种机械零部件等。
本发明涉及一种低热膨胀系数氰酸酯树脂复合材料及其制备方法,属于树脂基复合材料领域。其中A组分为氰酸酯树脂,60~99.5份,B组分为负热膨胀系数填料,其质量纯度不小于98%,0.5~40份,C组分为改性剂,占B组分重量的0.1%~3%。本发明将具有负热膨胀系数的材料通过物理及化学方法添加到氰酸酯树脂体系中,制备出低热膨胀系数复合材料,可大幅度降低复合材料的热膨胀系数,避免了材料间由于热膨胀系数不匹配或温度剧烈变化导致的材料变形及热应力破坏,可满足航空航天领域对低热膨胀系数复合材料的要求。
中冶有色为您提供最新的吉林长春有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!