本发明公开一种锂电池充放电测试装置及方法,主要由DSP主控芯片、锂电池充放电控制电路和锂电池信息采集电路组成;锂电池充放电控制电路包括功率晶体管Q1‑Q2、电感L、继电器开关和驱动电路模块;锂电池信息采集电路包括电流检测模块和电压检测模块。本发明通过编程产生研究所需的充放电电流和对应的充放电时间的自定义工况对锂电池进行充放电实验测试,可完成对锂电池主要性能参数测定与其等效电路模型充放电参数识别,同时又可以进行锂电池SOC估计算法验证与开发。
水性锂离子电池正极活性物浆料及正极片的制备方法,涉及锂离子电池领域;包括活性物和去离子水,所述活性物按质量分数计的如下组分:镍钴锰酸锂74%‑80%;锰酸锂15.5%‑20%;水系粘结剂1.5‑3%;导电剂1‑4%。通过镍钴锰酸锂提高电池的能量密度,锰酸锂提升电池安全及放电平台电压,本发明以去离子水为作为溶剂形成水性工艺,代替低毒、易燃的NMP油性工艺,降低生产环境的湿度要求高,协同镍钴锰酸锂和锰酸锂,具有生产成本低、环保、稳定性好(浆料密封存储72h以上不分层),制片一致性好的优势。水性锂离子电池正极片的制备方法,提升电池的能量密度,且组合成本低、比能量高,且电池制造过程中注液时间短,提高生产效率,有效提升50%以上的产量。
本发明提供一种含铁化合物涂层锰酸锂正极材料制备方法,属于锂离子电池正极材料制备技术领域。本发明正极材料的制备步骤为:按比例称取金属离子盐、铁盐和尖晶石型锰酸锂正极材料,将金属离子盐和铁盐溶于水中,搅拌溶解,加入锰酸锂和悬浮剂,同时机械搅拌后加入沉淀剂,过滤,洗涤及干燥,所得前驱体经烧结得到含铁化合物涂层锰酸锂材料。本发明采用溶胶?凝胶法将含铁化合物包覆在锰酸锂颗粒的表面,经过烧结后得到在锰酸锂颗粒的表面包覆有一层致密的铁酸盐涂层材料的锰酸锂正极材料,所得正极材料具有更好的放电比容量、高温循环及交流阻抗性能。
本发明的钛、钡活化磷酸铁锂正极材料制备方法,其锂源、铁源、磷酸根源、钛源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Ti∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mimn高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在普通纯氮气氛中,经500-750℃高温煅烧24h,即得钛、钡活化磷酸铁锂正极材料;由于掺杂少量取代钛、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明公开了一种铁锂电池大电流均衡DSP控制系统。该铁锂电池大电流均衡DSP控制系统包括至少二个串联的铁锂电池、与所述铁锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、铁锂电池电压检测模块、DSP控制器和保护装置。DSP控制器通过铁锂电池电压检测模块获得各个铁锂电池电压,当铁锂电池之间的均衡度大于设定阀值时,将电压最大的铁锂电池根据设定的时间通过大电流放电电阻放电。本发明采用DSP作为主要均衡控制器,提高控制速度与稳定性;并采用接触器矩阵方式,实现对铁锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电,同时,本系统操作简单,安全可靠,均衡效果好。
本发明公开了一种基于DSP控制的三元锂电池大电流均衡方法。设置一套三元锂电池控制系统,该系统包括至少两个串联的三元锂电池、与三元锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、三元锂电池电压检测模块、DSP控制器和保护装置。DSP控制器通过三元锂电池电压检测模块获得各个三元锂电池电压,当三元锂电池之间的均衡度大于设定阀值时,将电压最大的三元锂电池根据设定的时间通过大电流放电电阻放电。本发明采用DSP作为主要均衡控制器,提高控制速度;本发明采用接触器矩阵方式,实现对三元锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电;本发明方法操作简单,安全可靠,均衡效果好。
本发明公开了一种三元锂电池大电流均衡ARM控制系统。该三元锂电池大电流均衡ARM控制系统包括至少两个串联的三元锂电池、与所述三元锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、三元锂电池电压检测模块、ARM控制器和保护装置。ARM控制器通过三元锂电池电压检测模块获得各个三元锂电池电压,当三元锂电池之间的均衡度大于设定阀值时,将电压最大的三元锂电池根据设定的时间通过大电流放电电阻放电。本系统采用ARM作为主要均衡控制器,提高控制速度。本系统采用接触器矩阵方式,实现对三元锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电。本系统结构简单,操作方便,安全可靠,均衡效果好。
本发明的铜、钡活化磷酸铁锂正极材料制备方法,其锂源、铁源、磷酸根源、铜源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Cu∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mimn高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在普通纯氮气氛中,经500-750℃高温煅烧24h,即得本发明的铜、钡活化磷酸铁锂正极材料;由于掺杂少量取代铜、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明的锆、钡活化磷酸铁锂正极材料制备方法,其特征在于:其锂源、铁源、磷酸根源、锆源、钡源的原料,按照1mol?Li∶0.000020.00005mol?Zr∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mimn高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在普通纯氮气氛中,经500-750℃高温煅烧24h,即得本发明的锆、钡活化磷酸铁锂正极材料;由于掺杂少量取代锆、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明公开了一种用LiFePO4表面修饰尖晶石型LiNi0.5Mn1.5O4正极材料及其制备方法。所述方法为:先通过固相法制备出纯相橄榄石型结构LiFePO4,然后利用球磨法将橄榄石型结构的LiFePO4均匀地包覆到尖晶石状LiNi0.5Mn1.5O4复合电极材料表面。这种正极材料与石墨可组装成全电池。LiFePO4对LiNi0.5Mn1.5O4的包覆层一方面减少了LiNi0.5Mn1.5O4与电解液的接触,抑制了LiNi0.5Mn1.5O4在高电压下因电解液分解造成的过渡金属溶解问题,另一方面使负极材料在低电压下形成稳定的SEI膜,可有效提高LNMO@LFP/Li半电池与LNMO@LFP/Graphite全电池体系循环稳定性、抑制材料在循环过程中因电解液分解造成的容量衰减。这种方法制备简单、成本低、环境友好、适用于大规模工业生产。
本实用新型涉及匣钵技术领域,公开了一种锂电池正极材料锰酸锂烧结用匣钵,包括包括匣钵本体,匣钵本体为一个底壁和四个侧壁围成的可容纳粉体的凹腔,每个侧壁的顶部设有缺口,缺口之间形成凸台,至少一缺口的顶部设有通孔,且其对应侧壁上开设有与通孔相连通的通气孔;匣钵本体的其中一两相对侧壁的外侧对称设有凹槽,凹槽距离缺口的高度为3‑4cm。本实用新型有利多层匣钵叠放,并能保证烧结时各层之间气氛的良好流通,同时还方便人工搬动匣钵。
本发明公开了一种镍钴锰酸锂锂电池正极材料及其制备方法和应用,其制备方法包括以下步骤:向NCM811和铌源中加入有机溶剂,搅拌,然后蒸干溶剂,然后将剩余物料研磨成粉状;将研磨后的粉状物料于氧气气氛下进行两段式烧结,然后将烧结产物继续研磨成粉状;向粉状烧结产物和碳源中加入有机溶剂中并混匀,然后蒸干溶剂,将剩余物料继续研磨成粉状,然后将粉状物料于氧气气氛下进行烧结,最后,将烧结产物研磨,制得。该正极材料可有效解决现有的正极材料存在的循环性能差和倍率性能低的问题。
一种从粗碳酸锂提纯制备电池级碳酸锂的方法,包括以下步骤:(1)先将粗Li2CO3溶于纯水得到混合浆料,加入EDTA,加热搅拌,再加入饱和Na2CO3溶液,再加热搅拌,过滤,收集滤渣,洗涤,干燥,即得工业级Li2CO3;(2)将工业级Li2CO3与超纯水配成浆料,向浆料中通入CO2将其氢化,再加入过量的Li2S与重金属离子反应生成硫化物沉淀,再加入双氧水,把过量S2‑离子氧化成单质硫,过滤,弃去滤渣,即得到LiHCO3溶液;(3)将LiHCO3纯化液先采用萃取法除去Ca2+,Mg2+,再用选择性吸附树脂除去硼酸盐,得到LiHCO3纯化液;(4)将LiHCO3纯化液加热分解,得到Li2CO3;(5)得到的Li2CO3再经离心、洗涤,烘干,即得到电池级Li2CO3。本发明的方法具有应用范围广、除杂能力强、操作方便、成本较低、对环境污染小的优点。
本发明公开了一种镍钴锰酸锂(523)物理混合磷酸锰锂为正极材料的电池制备方法,其特征是,包括如下步骤:1)制浆;2)涂布;3)对辊、分切、整片;4)卷绕;5)包PET套;6)化成;7)高温老化。这种方法操作简单,能降低正极材料的成本,且制备得到的电池具有良好的电化学性能和良好的安全性能。
本发明的铌、钡铌、钡参杂磷酸铁锂纳米正极材料及其制备方法,其特征在于:其锂源、铁源、磷酸根源、铌源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Nb∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在5-120℃密封搅拌反应器中,反应0.5-24小时,过滤、洗涤、烘干后得到纳米前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧16-24h,即得本发明的参杂磷酸铁锂纳米粉末正极材料,其粉末粒度在30-85nm范围,其首次放电容量大大提高,达160.21mAh/g以上,生产成本可降十倍以上。
本发明涉及一种锶盐掺杂镍锰酸锂的锂离子电池正极材料制备方法,包括步骤:原料的准备、反应合成、高温烧结。本发明产物是三元金属氧化物新正极材料,该材料与Li或C组成锂离子电池,具有较高的比容量、高倍率特性和良好的循环性能;且该材料的电学特性一致性较好,工艺简单,成本较低,无需复杂昂贵的制备设备。
本实用新型公开一种以锂辉石制备锂盐的酸化窑,包括窑体,窑体的窑头设置进料口,窑尾设置出料口,出料口处设置出料罩,所述窑头的进料口处设置进料输送机,进料输送机和窑头之间设置迷宫密封装置;所述窑体的外圆周上设置有夹套,夹套通过支架固定且和窑体密封,夹套设置热源的进口和出口,夹套的出口和工艺上的余热回收管道连接;所述的夹套包括一次热源夹套和二次热源夹套,窑体均分为窑头段的预热段和窑尾段的加热段,一次热源夹套设置在预热段,二次热源夹套设置在加热段;一次热源夹套出口和二次热源夹套进口之间连接有设置控制阀的连通管。本实用新型能够有效解决反应过程中酸雾和灰尘逸出的问题,物料损耗少,环保节能。
本发明涉及一种锂电池、锂电池正极材料、及其高温固相合成方法。所述的锂电池正极材料制备方法为:按锂离子、锰离子、铝离子、镁离子的摩尔比,将原料投入球磨机,球磨处理后,进行二段烧结法煅烧处理,第一次烧结温度300--500℃,第二次烧结温度600--800℃,自然冷却至室温,即得。本发明合成的正极材料,应用于锂离子二次电池后,可广泛应用于手机、电脑、可移动电源、不可间断电源等供电设备及新能源汽车、潜艇、航天器、飞行器等在特殊环境下工作的设备。
本发明公开了一种低温制备锂离子电池正极材料氟磷酸钒锂的方法。(1)将五氧化二钒粉末加热到600~900℃,并恒温1~4h使其熔融后迅速倒入装有水的容器中形成棕红色溶液,该溶液静置4~16h即可形成V2O5·nH2O湿凝胶;将湿凝胶洗涤后除去大部分水分,然后在70~100℃下真空干燥4~16h,研磨得到五氧化二钒凝胶粉末;(2)将上述制备得到的五氧化二钒凝胶粉末与锂盐、氟盐、磷酸盐、乙炔黑按摩尔比为1∶2∶2∶2∶2.4混合均匀后,在惰性气体的保护下于400℃~700℃烧结5~20h,冷却后即为成品LiVPO4F;本发明简单方便、易于控制、成本低;降低了烧结温度,提高了样品的充放电性能和循环性能。
本发明公开了一种用于制作锂离子电池负极的负极浆料及其制备方法、锂离子电池负极和电池。所述的负极浆料主要由活性物质、导电剂、粘结剂和溶剂制成,所述的活性物质按重量百分比计由5~10%的纳米硅粉和95~90%的石墨粉组成,其中,所述的纳米硅粉为球形且BET中粒径≤80nm的纳米硅粉;所述的溶剂按重量百分比计由0~50%的水和100~50%的挥发性有机溶剂组成,其中,所述的挥发性有机溶剂为无水乙醇、丙醇或丁酮。本发明所述负极浆料通可有效解决纳米硅粉在浆料中不好分散的问题,结合采用挥发性有机溶剂作为配制浆料的溶剂,可以有效降低分散的纳米硅粉再次团聚和偏析,保证纳米硅粉颗粒以分散颗粒的形式的均匀分布。
本发明的锡、钡参杂磷酸铁锂纳米正极材料制备方法,其锂源、铁源、磷酸根源、锡源、钡源的原料,按照1mol?Li:0.00002-0.00005mol?Sn:0.0003-0.003mol?Ba:1mol?Fe:1mol?P比例混合后,在5-120℃密封搅拌反应器中,反应0.5-24小时,过滤、洗涤、烘干后得到纳米前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧16-24h,即得本发明的参杂磷酸铁锂纳米粉末正极材料,其粉末粒度在30-85nm范围,其首次放电容量大大提高,达160.21mAh/g以上,生产成本可降十倍以上。
本发明的镍、钡参杂磷酸铁锂纳米正极材料制备方法,其特征在于:其锂源、铁源、磷酸根源、镍源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Ni∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在5-120℃密封搅拌反应器中,反应0.5-24小时,过滤、洗涤、烘干后得到纳米前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧16-24h,即得本发明的参杂磷酸铁锂纳米粉末正极材料,其粉末粒度在30-85nm范围,其首次放电容量大大提高,达160.21mAh/g以上,生产成本可降十倍以上。
本发明的钴、钡参杂磷酸铁锂纳米正极材料及其制备方法,其特征在于:其锂源、铁源、磷酸根源、钴源、钡源的原料,按照1mol?Li:0.00002-0.00005mol?Co:0.0003-0.003mol?Ba:1mol?Fe:1mol?P比例混合后,在5-120℃密封搅拌反应器中,反应0.5-24小时,过滤、洗涤、烘干后得到纳米前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧16-24h,即得本发明的参杂磷酸铁锂纳米粉末正极材料,其粉末粒度在30-85nm范围,其首次放电容量大大提高,达160.21mAh/g以上,生产成本可降十倍以上。
本发明的钒、钡参杂磷酸铁锂纳米正极材料制备方法,其特征在于:其锂源、铁源、磷酸根源、钒源、钡源的原料,按照1mol?Li:0.00002-0.00005mol?V:0.0003-0.003mol?Ba:1mol?Fe:1mol?P比例混合后,在5-120℃密封搅拌反应器中,反应0.5-24小时,过滤、洗涤、烘干后得到纳米前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧16-24h,即得本发明的参杂磷酸铁锂纳米粉末正极材料,其粉末粒度在30-85nm范围,其首次放电容量大大提高,达160.21mAh/g以上,生产成本可降十倍以上。
本发明提供一种高电压镍锰酸锂锂离子电池电解液及含有该电解液的二次电池,属于锂离子电池电解液技术领域。所述电解液是由以下原料按重量百分比组成:非水溶剂76‑85%,电解质锂盐10‑18%,电解液稳定剂0.05‑0.1%,分散剂0.3‑0.5%,负极成膜添加剂2‑4%和正极成膜添加剂0.5‑2%;该电解液中所添加的添加剂能够在正极和负极表面形成结构均匀稳定固液界面膜,以解决现有尖晶石结构镍锰酸锂锂离子电池存在的循环性能差,不能满足实际需要的技术问题。
本发明的锌、钡参杂磷酸铁锂纳米正极材料制备方法,其特征在于:其锂源、铁源、磷酸根源、锌源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Zn∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在5-120℃密封搅拌反应器中,反应0.5-24小时,过滤、洗涤、烘干后得到纳米前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧16-24h,即得本发明的参杂磷酸铁锂纳米粉末正极材料,其粉末粒度在30-85nm范围,其首次放电容量大大提高,达160.21mAh/g以上,生产成本可降十倍以上。
本发明公开了一种流变相反应制备磷酸钒锂与磷酸锰锂复合正极材料的方法。将偏钒酸铵、锰盐、磷酸盐、聚乙二醇和锂盐溶于水后混合均匀,在75℃-95℃恒温水浴中反应5-10h形成流变态胶状物,干燥后在650℃-800℃非氧化性气氛中煅烧10-20h即为Li3V2(PO4)3·LiMnPO4。本发明简单方便、易于控制、成本低;合成的Li3V2(PO4)3·LiMnPO4复合材料克服了单体材料Li3V2(PO4)3电子导电率低的缺点,单体材料LiMnPO4离子扩散速率小,离子导电率低,难合成的缺点,相对于单体材料分别提高了样品的充放电性能和循环性能。
本发明公开了一种溶胶-凝胶方法制备钛掺杂的磷酸钒锂锂离子电池正极 材料。将偏钒酸铵、锂盐、磷酸盐和金属酯类按摩尔比为 2-2.2∶3-3.3∶3-3.3∶0.10-0.25混合均匀后,在惰性气体的保护下于400℃-700℃ 烧结5-20h,冷却后即为成品Li3V2(PO4)3。本发明解决了钒离子容易氧化问题, 降低了烧结温度,降低了成本,提高了样品的电导率以及充放电性能和循环性 能。
本发明公开了一种热水壶用的磷酸铁锂锂离子电池,包括正极、负极以及将正极和负极分隔开的隔膜,所述隔膜包括两个基膜层、以及夹设于两个基膜层之间的陶瓷纤维层;所述陶瓷纤维层的外表面上焊接有纳米颗粒,其由聚多巴胺包覆纳米二氧化硅组成。本发明通过设置兼具良好机械强度、优异的耐高温性能、较高的透气性和润湿性的隔膜,进而提高锂电池使用的安全性。
锂电池专用纳米钛酸锂复合材料的制备系统,将二氧化钛、铝盐、碳源、锂盐、镁盐混合,首先把二氧化钛打浆,把铝盐、镁盐、锂盐溶解,将二氧化钛、铝盐、镁盐、锂盐投入分散剂中混合;并真空干燥得到前驱体;其中钛、铝、镁、锂、碳元素的摩尔比为5∶(0.05~0.3)∶(0.1~0.4)∶(4.95~4.7)∶(2~20),将前驱体投入到惰性气体加热炉中高温煅烧,温度800~1000℃,时间超过8小时,再将煅烧后的产物降到室温得到碳包覆的钛酸锂复合材料。
中冶有色为您提供最新的广西有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!