本发明公开的多孔纤维凝胶聚合物电解质由聚偏氟乙烯、聚甲基丙烯酸甲酯、纳米SiO2和液体电解质组成,采用静电纺丝法制备而成。本发明的多孔纤维凝胶聚合物电解质具有离子传导率高,体系力学性能佳等特点,在聚合物锂离子电池中具有好的应用前景。
本发明涉及锂离子电池技术领域,为解决传统锂离子电池负极极片无法兼顾高粘结性和高能量密度的问题,提供了一种高粘结力负极极片及其制备方法、应用,所述高粘结力负极极片,包括负极集流体,依次设置在负极集流体表面的第一负极薄膜和第二负极薄膜,以第一负极薄膜总质量为基准,所述第一负极薄膜中含有2~4wt%的粘结剂;以第二负极薄膜总质量为基准,所述第二负极薄膜中含有0.5~1.5wt%的粘结剂。本发明的高粘结力负极极片基于双层涂覆结构,能够兼顾高粘结性和高能量密度。
本发明提供了一种铈钛氧簇/聚‑3,4‑乙烯二氧噻吩复合材料,其制备方法为:首先通过水热法制备含铈钛氧簇[Ti8O7(HOEt)(OEt)21Ce]晶体;其次将铈钛氧簇[Ti8O7(HOEt)(OEt)21Ce]晶体和EDOT溶于二氯甲烷溶液中,加入引发剂对甲苯磺酸搅拌反应48~56h,之后反应液经抽滤,滤饼用去离子水洗涤,置于烘箱中于60~70℃真空干燥20~24h,即得铈钛氧簇/聚‑3,4‑乙烯二氧噻吩复合材料;制备所得的复合材料可应用于锂离子电池负极材料,放电比容量高,循环稳定性好。
本发明公开了一种手机电池供电方法。现有充电模式在边充电边使用手机时会产大量热量,影响锂电池寿命。本发明在边使用手机边充电时,电池一充电,电池二供电;当电池一电量大于电池容量的20%,且电池二电量消耗到电池二容量的15%时,自动切换成电池一对手机供电,电池二充电,待电池二充满再给电池一充电;当电池一电量小于电池容量的20%时,对电池一进行充电,电池二供电,直至电池二电量耗尽,再切换到电池一供电。本发明根据非充电状态、充电状态的手机进入锁屏状态和边使用手机边充电状态三种情况,采用不同的充电和对手机的供电机制,并且只通过切换两块电池来进行充电和对手机进行供电过程,电池热量大大减少,提高锂电池寿命。
本发明提供了一种提升高镍正极材料稳定性和导电性的处理工艺,对在臭氧气氛中烧结得到的高镍正极材料分别进行二氧化碳退火处理和二氧化碳等离子体处理。该方法不仅能够缩短材料烧结的时间,提高产能,减少气体的用量,降低成本,而且能够降低高镍正极材料的锂镍混排程度,提升材料的一致性和稳定性,延长电池的使用寿命;在烧结结束后继续通入二氧化碳气体进行退火处理,能够与高镍正极材料表面残留的氢氧化锂发生反应,降低材料表面残碱含量,降低材料对空气的敏感度,延长材料的存放时间,提高材料的加工性能;最后进行二氧化碳等离子体处理,在材料表面包覆一层碳层,增加材料的导电性能,从而提升材料倍率性能。
本发明公开了一种具有高容量的多孔硅材料的制备方法,其特征在于,具体为:将硅化镁粉末置于氮气气氛下,经600~800℃的热处理后,再经酸洗及后处理得到所述的具有高容量的多孔硅材料。本发明提供了一种具有高容量的多孔硅材料的制备方法,以氮气气氛代替空气气氛,在制备多孔硅的同时,避免了硅的氧化,且无需采用高挥发性的氢氟酸进行处理,工艺简单,高效环保。制备得到的多孔硅中的氧含量极低,作为负极材料应用于锂离子电池中,将显著提高锂离子电池的比容量和循环稳定性。
本发明提供一种新型综合灯具,所述新型综合灯具由主灯体,底座组成,所述底座内包括整流电路,电源线,充电接口,主触摸开关,所述电源线通过主触摸开关与整流电路相连,所述整流电路与充电接口相连,所述主灯体和底座可拆卸式相连,所述主灯体由电源管理电路,锂电池,副触摸开关,水银开关,LED散光灯组,LED聚光灯组组成,所述锂电池与电源管理电路相连,电源管理电路与底座上充电接口可拆卸式相连,电源管理电路通过副触摸开关和倾角传感器的信号来控制LED散光灯组,LED聚光灯组的电路通断,所述底座上的充电接口与主灯体上的电源管理电路相匹配。本发明将台灯,应急灯和手电筒等常用的照明灯具整合在一起,并且操作简便。
本发明是一种利用溶剂热方法制备粒径可调、形貌可控的LiFePO4的制备方法,所制备的LiFePO4可以作为高倍率锂离子电池正极材料。其步骤如下:将可溶性磷源及二价亚铁盐溶于去离子水中,锂盐和表面活性剂、还原剂等混合均匀,将上述两溶液混合,得到无定形的LiFePO4,经过离心,加入形貌调控剂并搅拌至溶液均匀、澄清、稳定状态,放入反应釜中,在高温高压下反应一段时间,最后离心清洗,烘干,得到LiFePO4,且形貌大小可调。
一种1,3‑二(2‑氯‑4‑三氟甲基苯氧基)苯的合成方法,以3,4‑二氯三氟甲苯和间苯二酚锂盐为原料,在溶剂中反应完全,将反应液经分离纯化,获得1,3‑二(2‑氯‑4‑三氟甲基苯氧基)苯:所述间苯二酚锂盐和3,4‑二氯三氟甲苯投料物质的量之比为1:2‑8。本发明简化了后处理过程,提高原料的转化率和产物的收率。
本发明公开了一种换电站的消防控制方法、装置及系统,包括:监测换电站内的目标气体状态信息,得到第一气体状态信息,所述目标气体状态信息为目标电池处于热失控状态下释放的气体的状态信息;在所述第一气体状态信息指示所述目标气体状态信息达到第一预设气体状态的情况下,获取所述换电站内的环境状态信息和第二气体状态信息,所述环境状态信息为所述目标电池处于燃烧状态下的环境的状态信息;基于所述环境状态信息和所述第二气体状态信息,执行相应消防指令。根据本发明的技术方案,能够系统性的解决锂电池潜在和即将燃烧带来的火灾风险,并且通过实时对火情信息进行阶段性判断、针对性消防处理,实现全流程控制锂电池热失控造成的火灾风险。
本发明公开了一种转化型过渡金属化合物基固态电池,所述固态电池以转化型过渡金属化合物及其衍生复合物为电池正极材料、采用无机氧化物基固态电解质。以锂、石墨、硅等为负极,Li7La3Zr2O12或Li1.5Al0.5Ge1.5(PO4)3等为固态电解质,组成锂固态电池。以钠、硬碳等为负极,Na3Zr2Si2PO12等为固态电解质,组成钠固态电池。本发明还对固态电解质与负极或正极形成的界面进行了优化,改善了固‑固界面问题。制得的固态电池能够有效抑制转化反应体积膨胀、活性物质损失、过渡金属溶解等问题,从而显著提升循环稳定性和可逆性,并缓解转化反应的电压滞后问题。本发明获得的固态电池,具有大比容量、高能量密度特点,且实现了安全稳定的转化型固态电池长循环。
本发明公开了一种耐高电压的、整体取向的共价有机框架(COF)电解质膜的制备方法。采用Povarov环化反应用来制备富含三嗪和四氟苯基团的喹啉连接的共价有机框架COF;针对共价有机框架COF在高温下机械组装得到具有取向的离子传输孔道的耐高压COF电解质薄膜。本发明设计合成了耐高电压的COF电解质膜,整体取向的COF电解质膜实现锂离子的快速传输,制备的固态电解质的杨氏模量高,实现高镍三元正极材料的稳定循环,可用于锂离子电池固态电解质材料。
本发明涉及一种储能体系器件材料的制备方法,特别涉及一种集成化正极‑电解质及其静电纺丝制备方法,属于储能体系器件材料技术领域。本发明首先将活性物质和导电物质分散于聚偏二氟乙烯溶液中配置正极纺丝前驱液,将氧化物型陶瓷纳米颗粒分散于聚偏二氟乙烯溶液中配置电解质纺丝前驱液,然后进行连续静电纺丝得到集成化正极‑电解质纤维;最后,浇铸“聚合物‑导电锂盐”体系的聚合物电解质得到集成化正极‑电解质。该材料可应用于柔性固态锂电池中,具备良好的电化学性能和机械柔性。
本发明涉及有机合成技术领域,针对现有2‑(2,2‑二氟乙氧基)‑6‑(三氟甲基)苯磺酰氯合成路径较长、总产率较低的问题,本发明公开了一种2‑(2,2‑二氟乙氧基)‑6‑(三氟甲基)苯磺酰氯的合成方法,由式I化合物
本发明涉及一种机器人RV减速器润滑剂组合物,涉及滚动部和滑动部共同运转的减速器,尤其是涉及工业机器人关节部位的润滑。润滑剂组合物是含有基础油与稠化剂的基础脂中复配添加剂而成的润滑脂组合物。基础油是选自二次加氢基础、聚α烯烃油、烷基萘、酯类油、醚类油中的一种或者数种;复合脂肪酸皂为硬脂酸锂、硬脂酸钙、多羟基脂肪酸锂、多羟基脂肪酸钙中的一种或者数种,配合比例相对于前述基础脂100重量份是3~10重量份;复配添加剂的配合比例相对于前述基础脂100重量份是4~13重量份。通过本发明所述的机器人用RV减速器润滑剂组合物,提供有效防止初期磨损及长效抗磨损,并提供耐负荷性保护,满足机器人高精密长周期运行。
本发明公开了一种硫‑生物质碳/过渡金属复合电极材料及其制备方法和应用,通过膨化,浸泡,高温法,反应后生成了生物质碳/过渡金属复合材料,以此为载体,通过渗硫法,反应12~18小时,在生物质碳/过渡金属复合材料中复合单质硫,制备锂硫电池硫‑生物质碳/过渡金属复合电极材料。本发明硫‑生物质碳/过渡金属复合电极材料具有高比容量,高倍率性能及高循环寿命,特别适合用于制备锂硫电池的阳极,在移动通讯、电动汽车、太阳能发电和航空航天等领域具有广阔的应用前景。
本发明公开了一种多孔结构的MnO2/CeO2电极,以三维多孔泡沫镍为基体,基体上直接生长多孔MnO2,所述的MnO2上直接生长CeO2纳米颗粒。本发明还公开了该多孔结构的MnO2/CeO2电极的制备方法和应用。制备工艺简单、成本低、周期短、能耗低等优点,适合大规模工业化生产;制备得到的多孔结构的复合电极不含粘结剂,由于泡沫镍特殊的三维多孔结构以及多孔结构的MnO2/CeO2及其协同催化机理,所述的电极用作催化正极时,锂空电池显示出较低的极化和较好的循环稳定性。
本发明涉及一种聚合物/空心硫复合电极材料的制备方法。该方法以高比表面积的分子筛为载体,沉积有机盐,经高温烧结、还原、硫沉积、聚合、剔除分子筛,获得聚合物/空心硫复合电极材料;其中,分子筛为SBA-15,MCM-41,KIT-1,MSU-1的一种;有机盐为可溶于酒精的有机铜盐、有机银盐、有机铁盐和有机镍盐的一种;聚合物为聚苯胺、聚吡咯、聚噻吩、聚乙炔的一种;硫占聚合物/空心硫复合电极材料总质量的70~90%,聚合物占聚合物/空心硫复合电极材料总质量的3~10%,金属占聚合物/空心硫复合电极材料总质量的7~20%。本发明制备的聚合物/空心硫复合电极材料用于锂硫电池正极时,具有很高的比容量和优异的循环性能,在电池领域具有很好的应用前景。
本发明涉及一种基于最长电池寿命考虑的增程式电动汽车控制方法。它电池组电量的增程摆幅X依据下述方程式确定:电池组保修的最大行驶里程设定为L,每一个驾驶周期的里程设定为100km,则电池组保修里程内的驾驶周期数设定为n1,n1=L/100km,电池组保修里程内启动增程器将电池组从电量下限值充电至电量上限值的总循环数设定为n2,驱动电机效率设定为r,充电效率设定为p,电池组保修的最大行驶里程所需的总电量E=n1(E0-E1)/r+(n2*X%*E0)/r/p;其中,n2=k*f(X)-n1;k为电池损伤系数,对锂离子电池来说,k=1-n1*〔(100-M+0.5X)/14571〕(1/0.6844);f(X)为X的函数,函数关系为f(X)=(X/14571)(-1/0.6844);其中,L、E0、M、r、p对于电池组为已知数值,根据上述方程式确定X的数值。
本发明提供一种取代哌嗪乙基磺酰胺类衍生物,以及它们的可药用盐,通过取代磺酸经二氯亚砜氯化得到其酰氯衍生物,取代L型氨基酸经氢化铝锂还原得到L型胺基醇类化合物,与取代的磺酰氯衍生物发生偶联反应,再经甲磺酰氯保护得到其甲磺酸酯衍生物,与由单叔丁氧羰基保护哌嗪经取代反应和三氟醋酸脱保护得到的单取代哌嗪,并在有机胺催化下发生取代反应获得。本发明提供的化合物体外对五株肿瘤细胞毒活性试验表明,该类衍生物体外的细胞毒活性测试表明,部分化合物的活性高于或与阳性对照抗肿瘤药物相当,可在制备防治肿瘤疾病药物中进行应用;本发明化合物的结构通式:
本发明涉及溶液的除湿、自动循环系统,公开了节能型温、湿度自动调节空调机组,包括热泵系统,以及对称设置的右溶液循环系统与左溶液循环系统,所述的热泵系统包括压缩机系统以及冷凝换热器与蒸发换热器,右溶液循环系统包括右下溶液槽,右上溶液槽,右填料模块以及右喷淋管和右风机,右上溶液槽通过管路连接冷凝换热器,冷凝换热器通过管路与右喷淋管连接。本发明利用各个溶液槽中溶液的势能不同达到溶液浓度的自动调节,溴化锂溶液具有吸湿和杀菌的作用,保证了空气的干燥以及干净,而且还可以利用经过制冷系统的溶液具有一定的热能,对其中的热能进行有效利用的节能型温、湿度自动调节空调机组。
本发明涉及一种利用硅化镁为原料制备非晶硅/碳复合材料的方法及其作为锂离子电池负极材料的应用。非晶硅能够更好地缓冲硅体积膨胀,增强结构稳定性,是最有潜力的高比容量锂离子电池负极材料之一,而碳包覆是对硅负极进行改性的重要手段之一。本文以绿色环保的碳酸盐为碳源,利用了硅化镁分解出的镁与碳酸盐发生还原反应,在碳酸盐还原为碳的同时沉积在硅颗粒表面,从而将非晶硅的制备和包碳这两个步骤合为一步,优化了制备工艺,同样得到了具有性能优势的硅/碳复合材料。制得的非晶硅/碳复合材料在1A g‑1循环970次后的放电容量接近570mAh/g,具有优异的循环性能和倍率性能。
本发明实施例提供了一种开关机电路,该开关机电路在满足终端设备正常开关机需求的基础上,通过切断锂电池电源与微控制器的连接以尽量降低锂电池的电量损耗。该开关机电路包括:开关模块用于根据第一按压操作生成第一信号;微控制器根据第一信号将主电路模块设置为掉电状态,且向电源管理模块发送第二信号,第二信号用于使电源管理模块与所述微控制器断开连接;开关模块用于在第二按压操作持续时间内生成第三信号;电源管理模块根据第三信号为所述微控制器供电;上电后的微控制器周期性生成第四信号,且将主电路模块设置为上电状态,第四信号用于在撤销第二按压操作后控制电源管理模块继续向微控制器供电。
本发明公开了一种硫‑霉菌孢子碳球/磷化物复合材料及其制备方法和作为锂硫电池的正极材料的应用,通过霉菌培养,浸泡法,高温法,反应后生成了霉菌孢子碳球/过渡金属磷化物复合材料,以此为载体,通过渗硫法,反应12~18小时,在霉菌孢子碳球/过渡金属磷化物复合材料中复合单质硫,制备锂硫电池硫‑霉菌孢子碳球/过渡金属磷化物复合电极材料。本发明硫‑霉菌孢子碳球/过渡金属磷化物复合电极材料具有柔性、高比容量,高倍率性能及高循环寿命等优点,在移动通讯、电动汽车、太阳能发电和航空航天等领域具有广阔的应用前景。
本发明涉及一种高S含量的P,S,N共掺杂的介孔碳材料的合成方法及其应用。其制备方法如下:以2?氨基噻唑和磷酸二氢钠为原料,ZnCl2为溶剂和催化剂,放在管式炉中高温碳化一步法得到高S含量的P, S, N共掺杂的介孔碳材料SNPPC,其中SNPPC?800比表面积高达1122.46m2/g,孔径在20?50nm之间,含硫量高达12.58%,SNPPC?800相比于低S的SNPC展示了优异的锂电性能、氧还原性能和超级电容器性能。此外,这种方法操作简单、收率较高,具有较为广阔的应用前景。
本发明涉及一种抗静电共聚酯纤维的制造方法, 该制造方法是将改性的磷酸铁锂、锰酸锂纳米粉末与超细硅藻土、锗酸钠、乙二醇、对羟基苯甲酸、丁二醇研磨混合制得改性乙二醇溶液Ⅰ,然后将改性乙二醇溶液Ⅰ、乙二醇、对苯二甲酸共混打浆并酯化,在常压酯化?缩聚阶段加入由改性钛酸钾晶须、改性氧化锡晶须、聚乙二醇、间苯二甲酸双羟乙酯?5?磺酸钠、抗氧剂、乙二醇研磨混合制得的改性乙二醇溶液Ⅱ,然后进一步缩聚制得抗静电共聚酯,其与常规聚酯复配后作为皮层组份,以常规聚酯作为芯层组份,通过H形组合喷丝孔后通过熔体膨胀粘连,制得一种抗静电共聚酯纤维,该方法制备的抗静电聚酯纤维具有良好的抗静电效果,同时其力学性能、加工性能优良。
本发明公开了一种具备高倍率性能的LiFePO4/C正极材料的制备方法, 包括:按Li与Fe的摩尔比为1~1.05∶1称取原料FePO4和锂源化合物,加 入碳源化合物和二茂铁催化剂,以无水乙醇为球磨介质球磨8~12h,得到浆 料,所得浆料经干燥后在惰性气体保护下热处理,在此过程中,伴随碳源化 合物的热裂解,催化剂与之相互作用,促使其形成石墨化结晶程度更好的碳 包覆膜。本发明方法制备的磷酸铁锂正极材料具有更高的电子电导率,更高 的比容量,尤其是高倍率性能得到较大改善,在动力电池领域具有很好的应 用价值。
本发明公开了一种离子液体辅助水热合成MoS2微球的制备方法。它是将钼酸盐溶解在去离子水中,形成0.05~0.1m的溶液,加入硫代乙酰胺或硫脲硫源,硫代乙酰胺或硫脲与钼酸盐的物质量比为3∶1~5∶1;搅拌均匀后再加入离子液体1-丁基-3-甲基咪唑四氟硼酸盐,离子液体与合成溶液的体积比为1∶300~1∶50;充分搅拌后将该溶液转移到水热反应釜中,于200~240℃下水热反应20~24小时,自然冷却后,经分离、洗涤和干燥后得到MoS2微球。本发明的合成方法具有反应条件温和,工艺简单,粒径均匀,产率高的优点。本发明方法合成的MoS2微球作为电化学储氢、电化学储锂和电化学储镁电极材料、以及固体润滑剂等具有广泛的应用。
本发明公开了一种聚酯平板微孔膜及其制备方法。微孔膜组成为:质量百分含量为60~99.9%的聚酯和质量百分含量为0.1~40%的改性剂。或质量百分含量为20~40%的无纺布,质量百分含量为60~79.9%的聚酯,质量百分含量为0.1~30%的改性剂。制备方法是基于热致相分离过程实现的,将聚酯、改性剂和稀释剂在高温下混合成均相溶液并刮制成液膜,降温固化成膜形成具有微观相分离的前体膜,进而经萃取得到平板成微孔膜。本发明所制备的聚酯平板微孔膜具有海绵状结构,孔径为0.05~5.0微米,孔隙率为30~80%,并具有孔径分布窄,孔径大小均匀,孔径大小易控,强度高和结构对称等优点,是一种高性能、低成本、长寿命的水处理用过滤膜材料和锂离子电池隔膜材料。
本发明公开了一种蒸汽凝液热能回收系统的优化节能方法,将生产系统中具有一定热量值的蒸汽凝液或热水通过溴化锂机组进行热回收转化,制取工艺中需要的3~9℃冷冻水,所述蒸汽凝液先加热溴化锂稀溶液然后再被送回脱盐水站,所述蒸汽凝液或热水的温度大于等于90℃。通过对蒸汽凝液热能回收系统进行优化节能,完成了对热的回收和能量之间的相互转换,优化了工艺结构和用能平衡,降低了公用工程能耗,本发明节约了运行成本,降低了产品单耗。
中冶有色为您提供最新的浙江杭州有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!