本发明公开了一种石墨烯片-碳纳米管膜柔性复合材料及制备方法与应用。它是在碳纳米管膜上利用微波等离子体增强化学气相沉积法制备石墨烯片,以所获得的石墨烯片-碳纳米管膜柔性复合材料为阴极组装场发射器。本方法所制备的石墨烯片-碳纳米管膜柔性复合材料具有柔性的特点,石墨烯片呈阵列状态分布在碳纳米管上,石墨烯片层数为1-10层、在碳纳米管膜上的分布密度为8-12片/平方微米、宽度为0.5-1.2微米。与在平面硅基底上生长的石墨烯片相比,本方法所制备的石墨烯片-碳纳米管膜柔性复合材料具有更低的开启电场和更大的场发射电流密度,且能够在较高场发射电流密度下稳定工作,具有较高的应用价值。
本发明提供一种硅基复合材料及其制备方法、硅碳复合材料含上述材料的锂离子电池,属于锂离子电池技术领域,其可解决现有的硅基复合材料和由其制备的锂离子电池在充放电过程中的体积效应而引起的容量衰减的问题。本发明的硅基复合材料的制备方法包括将SiOx(0.5≤x≤1.5)与导电性碳基体混料获得SiOx(0.5≤x≤1.5)/C的复合粉体的步骤,并将该复合粉体用碳前躯体包覆获得包覆物和将该包覆物进行碳化反应步骤。本发明选取适当的工艺参数获得了循环性能优良的硅基复合材料和硅碳复合材料,制备了含上述材料的锂离子电池。本发明的上述复合材料是由上述方法制备的。本发明的锂离子电池包括上述的复合材料。
本发明提供具有优良的难燃性及力学特性,且燃烧时不生成卤类气体的轻质纤维增强复合材料。还提供适用于得到上述纤维增强复合材料的预浸料坯及环氧树脂组合物。进一步提供使用上述纤维增强复合材料的用于电气·电子设备外壳的一体化成型品。一种碳纤维增强复合材料用环氧树脂组合物,含有[A]环氧树脂、[B]胺类固化剂、[C]磷化合物,且成分[C]的含量以磷原子浓度计为0.2~15重量%。
本发明涉及一种用作锂离子电池负极的高能复合材料及制造工艺,该高能复合材料是以碳材料、硅粉、糖微球的一种或多种的混合物为核体材料,以热解碳为壳体材料,核体材料重量百分比为10%~60%,壳体材料热解碳为40%~90%。该高能复合材料制造工艺为(1)混合:将核体材料与壳体材料同时放入有惰性气体保护高温反应釜,加温并搅拌;(2)包覆:控制温度和压力使壳体材料包覆核体材料;(3)碳化:将已包覆材料真空干燥后送入高温碳化真空炉碳化;(4)石墨化:碳化处理后的包覆材料送入高温石墨化真空炉石墨化即得到均匀的复合材料。采用本发明工艺制造的高能复合材料,用于二次电池中,其比容量可以高达1060mAh/g以上,经500次循环后,仍可保持80%以上的容量。
本发明公开了一种复合材料成像检测方法及复合材料成像检测系统。所述复合材料成像检测方法包括如下步骤:步骤1:敲击复合材料的一个单位位置,获取该单位位置的敲击力持续时间以及敲击力幅度数据;步骤2:根据单位位置的敲击力持续时间以及敲击力幅度数据,绘制敲击力波形图;步骤3:分析该单位位置的所述敲击力波形图,以检测该单位位置的状态,并进行状态提醒;步骤4:变换敲击复合材料中的其他单位位置,并重复步骤1至步骤3中的步骤,以检测整个复合材料的所有单位位置的状态。采用这种方法,不仅能够快速、准确地检测出复合材料中存在的缺陷,有效降低人为因素和环境因素对检测结果的影响。
本发明公开了一种新型环保保水抗蒸发复合材料,是由以下重量份的原料组成的:蒙脱土/琼脂糖复合材料20~40份,改性活性炭10~30份,腐植酸40~60份。是通过以下方法制备得到的:(1)蒙脱土的有机化改性处理;(2)将琼脂糖和改性蒙脱土进行插层复合形成蒙脱土/琼脂糖复合材料;(3)活性炭的改性处理;(4)将上述制备的蒙脱土/琼脂糖复合材料、改性活性炭、腐植酸混合,混匀,即得。本发明的复合材料,遇水后能形成保水薄膜,该保水薄膜在阻断土壤中水分渗透的同时,能允许植物的根系穿过,具有良好的保水阻水功效,可以作为保水阻水剂进行应用,阻水保水时间在280天以上。
提供一种复合材料,该复合材料通过加工包含热塑性树脂、束型碳纳米管和强化材料的树脂组合物制备而成。在加工之前所述碳纳米管的ID/IG为1.0以下。复合材料中存在的碳纳米管的余量长度的比率为40%至99%。复合材料具有改善的机械性能,且导电性不劣化。由于这些优势,所述复合材料可以用于制备各种模制品。
一种碳-碳/铝复合材料的制备方法。用于高性能材料制备领域。方法如下:碳纤维坯体的成型:通过排铺、针刺法形成碳纤维坯体,排铺是将碳纤维按照单向或者多向排铺在模具中,并达到设定的体积含量,针刺法是将堆叠好的整体毡通过针刺机处理,使碳纤维彼此交连,获得碳纤维坯体;碳-碳预制件的成型:通过致密化工艺固结纤维,形成多孔碳-碳预制件,即采用化学气相渗工艺在碳纤维表面沉积热解碳层,碳纤维通过热解碳使连接在一起;碳-碳预制件与铝复合:使用真空压力浸渍法或者压力铸造法进行,凝固后最终形成碳-碳/铝复合材料。本发明有效解决碳/铝复合材料制备过程中预制件制备和界面反应控制这两个难题,有助于简化工艺,降低成本。
本发明提供了一种改性活性炭纤维复合材料及其制备方法、非均相电‑Fenton催化复合材料及其应用。该制备方法包括利用酸溶液对活性炭纤维进行预处理,得到预酸化的活性炭纤维;将亚铁盐与银盐在水中混合进行第一反应,然后加入预酸化的活性炭纤维和碱形成反应体系,进行第二反应,得到所述改性活性炭纤维复合材料。本发明还提供了上述制备方法得到的改性活性炭纤维复合材料。本发明进一步提供包括上述改性活性炭纤维复合材料的非均相电‑Fenton催化复合材料,以及该非均相电‑Fenton催化复合材料在非均相电‑Fenton催化降解有机污染物中的应用。本发明提供的改性活性炭纤维复合材料具有较高的催化活性和循环稳定性。
本发明申请属于金属基复合材料技术领域,具体公开了一种新型稀土氧化物包覆碳纳米管增强镁基复合材料的方法,包括材料配制、球磨混粉、干燥处理、制备柱状坯锭、热挤压处理、热处理。本方案主要应用在通过稀土氧化物包覆碳纳米管增强镁基复合材料性能的过程中,解决了现有技术中在制备碳纳米管增强镁基复合材料时存在的碳纳米管与镁基体的界面结合力差,以及碳纳米管在镁基体中分散不均匀的问题。
本发明公开了一种含有纳米MOFs的BT树脂复合材料及其制备方法,采用纳米级金属有机框架化合物材料(MOFs)为填料与BT树脂预聚体复合制备MOFs/BT复合树脂,其制备方法简单,制得的复合材料具有优异的热力学性能,同时还具有较低的介电常数和优异的热稳定性,MOFs纳米填料合成方法简单,且其添加量低,能极大程度节约了原料成本,同时对树脂的聚合反应有着显著的催化效应,可获得更为优异的介电性能,适用于制备航空航天、电子电路、通信等领域的先进复合材料和胶黏剂等。
本发明涉及一种壳聚糖-石墨烯量子点纳米复合材料的制备以及其修饰电极与铋膜结合用电化学法同时检测Zn2+、Cd2+和Pb2+,包括以下步骤:制备石墨烯量子点、制备壳聚糖-石墨烯量子点纳米复合材料、制备壳聚糖-石墨烯量子点纳米复合材料修饰电极、结合铋膜用电化学法同时检测Zn2+、Cd2+和Pb2+。本发明的有益效果是:壳聚糖-石墨烯量子点纳米复合材料的制备方法简便易行,制备过程环保无污染,且壳聚糖-石墨烯量子点/铋膜修饰电极对Zn2+、Cd2+和Pb2+可以实现同时且高灵敏检测。
本发明涉及一种SiBN纤维增强SiO2‑BN‑Al2O3透波复合材料的制备方法,将硅溶胶中加入纳米BN粉末和纳米Al2O3粉末,搅拌均匀后得到混合浆料;将SiBN纤维预制件放置在混合浆料中进行真空浸渍,浸渍压力为20KPa~60KPa,然后干燥、烧结处理,得到烧结处理后的复合材料;将烧结处理后的复合材料放置在混合浆料中进行压力浸渍,浸渍压力为2~8MPa,然后干燥、烧结处理;重复4‑6次,即得。本发明的工艺过程简单、易操作、成本低,复合材料密度高,介电性能优良,耐高温烧蚀以及抗冲刷性能强。
本发明属于热电材料技术领域,具体涉及一种Cu‑Te纳米晶/Cu2SnSe3热电复合材料及其制备方法,该复合材料中Cu‑Te纳米晶在复合材料中的体积比为0.2‑1.2%。本发明制备的Cu‑Te纳米晶/Cu2SnSe3型热电复合材料表现出较好的热电性能,大幅提升了Cu2SnSe3基体的ZT值;制备所需工艺操作简单、参数可控、适用于较大规模生产。
本发明涉及一种纳米金属或合金/电极活性物质复合材料,包括:纳米金属或合金与电极活性物质;纳米金属或合金颗粒占电极活性物质的0.02~30wt%。该复合材料作为二次锂电池的负极活性材料,与含锂的过渡金属氧化物正极、有机电解质溶液、隔膜、电池壳、集流体和引线组成二次锂电池。该复合材料中的电极活性物质材料提供了刚性骨架结构和嵌锂中心,可促进在电极活性物质材料表面形成固体电解质层,而这层固体电解质膜具有很好的离子导电能力;可以抑制对石墨片层结构的破坏;可以有效阻止纳米材料的团聚;使得材料的循环性和大电流充放电能力明显提高。使用这种复合材料的二次锂电池具有好的循环特性和安全性,适用于需要较高能量密度的场合。
本发明公开了一种纤维复合材料组件和制造纤维复合材料组件的方法。所述纤维复合材料组件包括具有第一纤维的第一复合材料层和具有第二层的第二复合材料层。所述第一纤维包括螺旋部分,且所述第二纤维延伸至所述第一纤维的螺旋部分内。一种制造纤维复合材料组件的方法包括拉伸卷绕的纤维预成型体以形成螺旋纤维,或者将第一纤维设置于第一复合材料层中,并将第二纤维设置于第二复合材料层中。
本发明制备了一种氮化二铬-氧化铝(Cr2N-Al2O3)复合材料。主要特征在于Cr2N-Al2O3复合材料的制备是采用机械球磨的方法,将纳米氧化铝和纳米氮化铬粉体混合均匀,在氮气气氛中采用热压烧结方法制得。制备的Cr2N-Al2O3复合材料中,Cr2N的含量为3~30vol.%,纳米级到微米级Cr2N颗粒均匀分散在Al2O3基体中,密度接近理论密度,复合材料的室温强度达700~800MPa,韧性4~4.8MPa·m1/2,均较纯Al2O3有明显提高。
一种碳纳米管增强氮化铝复合材料及其制备方法,该复合材料以氮化铝为基体,碳纳米管为增强相,通过添加烧结助剂制成,其组分及重量百分数分别为:氮化铝(89~95)WT%、氧化钇(2~4)WT%、氟化钙(2~4)WT%、碳纳米管(1~3)WT%。该复合材料制备方法为:将增强相碳纳米管经化学提纯、超声分散后,将基体氮化铝、分散后的碳纳米管和烧结助剂混合,经球磨分散成混合浆料,混合浆料经干燥、研磨和过筛,再进行热压烧结,最终形成碳纳米管增强氮化铝复合材料。本发明使氮化铝基体的力学性能提高,并实现低温致密化烧结,制备方法工艺简单、制作方便且成本相对较低。
本发明提供一种能够抑制金属碳化物的生成、重 量轻且具有高的热导率、并且能够控制热流方向的金属基碳纤 维复合材料的制造方法。金属基碳纤维复合材料的制造方法包 括以下工序:将碳纤维与金属粉末物理地混合,从而得到金属 纤维混合物的工序;排列金属纤维混合物,同时填充至夹具中 的工序;以及将夹具设置在大气中、真空中或惰性气氛中,加 压的同时直接通上脉冲电流,从而利用由其引起的发热进行烧 结的工序。其中,以复合材料的总重量为基准,该复合材料含 有10~80重量%的碳纤维,且其被烧结至理想密度的70%或 以上。
本发明提供一种能够抑制产生带电及腐蚀并抑制强度劣化的复合材料箱、具备复合材料箱的翼及复合材料箱的制造方法。该复合材料箱的特征在于,设有:箱主体,具有由利用纤维强化了的树脂形成的第一树脂部(11、12)及由金属材料形成的金属部,内部贮存有可燃物;第二树脂部(22),至少覆盖箱主体的内表面上的、与第一树脂部(11、12)的金属部相邻的区域,由利用纤维强化了的树脂构成;多个导通部(23),使电荷从在第二树脂部(22)中与可燃物相接触的面向第一树脂部(11、12)进行移动,第二树脂部(22)所包含的纤维比第一树脂部(11、12)所包含的纤维的电阻率高,且第二树脂部(22)为隔离第一树脂部(11、12)及金属部的层。
本发明涉及一种竹纤维/聚乳酸耐候型全降解复合材料的制备方法及该复合材料,属于环境友好型复合材料技术领域。本发明采用两步法熔融共混工艺,先制备改性竹纤维及其高填充母粒,再获得由母粒与聚乳酸直接熔融共混而成的复合材料,可以促进改性竹纤维、相容剂和抗氧剂在聚乳酸基体中均匀分散,获得具有良好分散性和加工性的竹纤维高填充母粒和均分散复合材料。该方法采取的生产工艺简便,易于规模化生产,且天然纤维原料广泛易得、生产成本低,复合材料综合性能优异,具有广阔应用前景。
本发明涉及Na2Ti3O7@Fe2O3复合材料及其制备方法和在钠离子电池中的应用,包括如下步骤:(1)将碱性钠源溶于溶剂中,边搅拌边滴加钛源,继续搅拌,然后于120~200℃下进行加热烘干4~24h,获得Na2Ti3O7前体材料;(2)将所述Na2Ti3O7前体材料分散于水中,加入铁源和维生素形成混合液,然后依次进行球磨、喷雾干燥、煅烧,最后制得Na2Ti3O7@Fe2O3复合材料;Fe2O3包覆在Na2Ti3O7外形成复合材料;应用于钠离子电池的负极材料,具有较高的比容量,高倍率特性以及较好的循环稳定性。
本发明公开了一种新型的光控CO抗菌复合材料的制备方法,属于生物医用材料技术领域,具体步骤如下:S1.光催化纳米材料AgCCN的合成;S2.CaCO3@AgCCN的合成;S3.CaCO3@AgCCN/壳聚糖复合材料的制备。本发明通过负载碳酸钙(CaCO3)可以特异性识别细菌生存的弱酸性环境,增加局部环境中的二氧化碳(CO2)含量,进而在光催化剂(AgCCN)和可见光引发下将CO2转化为具有抗菌活性的一氧化碳(CO),实现安全可控的抗菌疗效。该抗菌复合材料的制备方法简单易行且成本较低,同时,其抗菌效果具有智能可控性,安全有效性以及不易引发细菌耐药性等优点,适用于生物医疗领域。
本发明属于材料技术领域,公开了一种[H2Nmim][NTf2]@UiO‑66‑Br纳米复合材料的合成方法,所述材料包括:溴功能化的Zr‑MOFs(UiO‑66‑Br)以及负载在其上的氨基官能化的咪唑类离子液体([H2Nmim][NTf2])。本发明还公开了所述纳米复合材料在分散固相微萃取技术(DSPME)预处理水样中萃取富集磺胺类抗生素的应用。本发明所述纳米复合材料已被成功应用于磺胺类抗生素的萃取分析,在短时间内只需要使用少量吸附剂和样品即可完成,具有快速,灵敏,高效,且经济适用的特点。本发明还可以根据目标分析物的结构进行筛选、设计和调控吸附剂,为其他环境污染物的分析提供了一种新思路,对于保护公众与环境的健康安全具有重要意义。
本发明涉及超级电容器,特指一种功能化碳纳米片/WO3纳米棒复合材料及其制备方法。本发明首先制备出了功能化碳纳米片,然后再水热反应生成功能化碳纳米片/WO3纳米棒复合材料,该复合材料作为超级电容电极材料表现出优异的电化学性能,且制备工艺简单,作为新型能源材料在超级电容器、锂离子电池等设备领域具有较好的应用前景。
本发明涉及一种用于锂硫电池正极的HPCSs@d‑Ti3C2复合材料及其应用。该复合材料是由表面带负电的d‑Ti3C2溶液与改性后表面带正电的HPCSs通过自组装进行复合,制备出的HPCSs@d‑Ti3C2复合材料;并通过熔融浸渍固硫制备HPCSs@d‑Ti3C2/S电极材料。该正极材料具有多孔结构、比表面积高和良好的物理化学吸附性能等优点,不仅能提高载硫量,还能有效抑制多硫化物的穿梭效应,同时体系中的HPCSs,能提高硫载量以及动力学性能,使锂硫电池表现出良好的电化学性能。
本发明涉及一种耐磨防霉新型复合材料洗漱盆及其制备方法,属于日常生活必需品的技术领域。本发明的耐磨防霉新型复合材料洗漱盆,包括基本呈平面的台面板,所述台面板的中间形成有与所述台面板一体成型且内凹的盆体;台面板与所述盆体由人造石原料模制而成,并且所述台面板以及所述盆体的上表面上涂覆有耐磨疏水保护涂层。本发明的新型复合材料洗漱盆具有硬度高、耐磨防霉,耐久性好且能够提供易于清洁的表面,无需强力擦洗和酸性清洗剂,即可清洗各种有机或无机的污垢。
本发明实施例公开了一种MoSxOy/碳纳米复合材料、其制备方法及其应用;其中,所述MoSxOy/碳纳米复合材料中,2.5≤x≤3.1,0.2≤y≤0.7,且基于所述纳米复合材料的总质量,所述MoSxOy的质量百分数为5‑50%。本发明制备的MoSxOy/碳纳米复合材料用作电催化析氢反应催化剂时,过电势300mV时的电流密度在150mA/cm2以上;该性能与商用的20%Pt/C催化剂性能差距较小,甚至相当,远好于现有的MoS2复合材料的催化性能。另外本发明制备的MoSxOy/碳纳米复合材料还具有良好的催化稳定性,在进行8000次催化循环之后,其电流密度只下降了3%,表现出了非常优良的催化性能和循环稳定性。
本发明公开了一种二维锐钛矿TiO2/g‑C3N4复合材料,该材料为二维层片结构,通过g‑C3N4与TiO2前驱体通过表面活性剂复合而成;所述复合材料的厚度为2‑20nm,横向尺寸为100nm‑2μm,比表面积为88~110m2·g‑1。本发明通过疏水亲水作用组装成“乙二醇修饰的Ti‑O水合物‑表面活性剂‑g‑C3N4”夹心结构,通过空气煅烧弥补TiO2(B)中的氧缺陷,最终得到的二维锐钛矿TiO2/g‑C3N4复合材料实现了两种超薄纳米片的紧密、均一的复合,形成大面积异质界面,提高了电子的传输速率,抑制光生电子空穴复合;具有很高的光催化产氢性能和光催化降解有机物的活性。
本发明公开了一种多股绞合纤维增强树脂基复合材料芯铝绞线及其制备方法。复合材料芯铝绞线由多股纤维增强树脂基复合材料加强芯(1)和位于复合材料加强芯(1)外层的铝线(2)同心绞制而成,纤维增强树脂基复合材料加强芯(1)的股数为大于等于7,层数大于等于1;铝线(2)层数大于等于1层。本发明提供的多股绞合纤维增强树脂基复合材料芯铝绞线具有优异的弧垂特性,突出的机械性能和电性能,而且安全性高,寿命长。本发明提供的制备方法,工艺设计合理,可操作性强,工作效率高,可实现工业化生产,制备得到的导线性能更加优越,具有强度高、安全性高、耐腐蚀、耐疲劳、韧性好等诸多优点。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!