本发明公开了碳化钛‑二硼化钛双相增强铜基复合材料,TiC和TiB2同时存在于Cu基体中,TiC和TiB2均为颗粒状。本发明还公开了上述复合材料的制备方法,通过机械球磨使得原始Cu、TiH2、B4C粉末形成焊合,在热压烧结过程中减少了扩散距离,易于生成TiC和TiB2两种颗粒,热压烧结后两种颗粒状的TiC和TiB2同时存在于Cu基体中,实现了增强体间的优势互补,改善材料的性能,使得铜基复合材料在导电率下降比例不大的情况下,显著提高其硬度。
一种制备多层复合材料的方法,所述多层复合材料包含具有粘合剂释放特性的塑料层,产生所述释放特性的材料位于塑料层内。该方法包括:在制备所述复合材料的过程中在粘合剂层的一侧提供第一织物;接下来设置具有所述释放特性的塑料层,再将该塑料层粘结到第二织物上。
本发明涉及一种分散均匀的聚对苯二甲酸乙二醇酯/纳米无机物复合材料的制备方法。其步骤为:将对苯二甲酸、乙二醇、缩聚催化剂和稳定剂按比例加入反应釜,在198~245℃,0.40~0.45MPa条件下酯化3~4h,酯化结束后,体系泄压至常压、降温至150℃后再加热到245℃,然后向体系内添加无机填料和分散剂,抽真空至压力小于300Pa,升温至265~275℃下反应3~5h,得到无机填料在PET中均匀分散的复合材料。本发明所采用的无机填料的来源广,易加工,改性过程成本低;工艺简单、安全无污染,适用于聚对苯二甲酸乙二醇酯/纳米无机物复合材料的产业化发展。
一些变型提供一种包含含金属的微米粒子和纳米粒子的金属基质纳米复合材料组合物,其中所述纳米粒子化学和/或物理地设置在所述微米粒子的表面上,并且其中所述纳米粒子遍及所述组合物以三维构造固结。所述组合物可以用作用于生产金属基质纳米复合材料的锭料。其他变型提供一种功能梯度金属基质纳米复合材料,其包含金属‑基质相和含有纳米粒子的增强相,其中所述纳米复合材料含有所述纳米粒子的浓度梯度。该纳米复合材料可以被或被转化为母合金。其他变型提供制备金属基质纳米复合材料的方法、制备功能梯度金属基质纳米复合材料的方法、和制备母合金金属基质纳米复合材料的方法。所述金属基质纳米复合材料可以具有铸造微观结构。披露的方法使得金属基质纳米复合材料中的纳米粒子的各种负载能够具有多种组成。
一种碳纳米管‑硫化锂‑碳复合材料的制备方法,将升华硫粉溶于无水甲苯,形成透明溶液A;将碳纳米管超声分散在三乙基硼氢化锂的四氢呋喃溶液中,形成悬浮液B;将溶液A加入悬浮液B中,得碳纳米管‑Li2S复合材料的悬浮液,加热蒸干溶剂即得到碳纳米管‑Li2S复合材料粉末;最后将碳纳米管‑Li2S材料置于惰性气氛中进行化学气相沉积碳,形成碳纳米管‑Li2S‑C复合材料。本发明制备的碳纳米管‑硫化锂‑碳复合材料导电性好,包覆层紧密,可改善Li2S电极的导电性,有效抑制多硫化物在电解液中的溶解和扩散,提高硫的利用率;同时碳纳米管的多孔结构,对硫电极在充放电过程中发生的体积膨胀和收缩有缓冲作用。
本公开提供了一种可自由塑形的人工骨复合材料,其是由水溶性材料、聚合物材料、无机颗粒、生长因子和抗菌物质混合而成的组合物,聚合物材料为对二氧环己酮、己内酯中的至少一种单体与丙交酯、乙交酯中的至少一种单体所形成的共聚物,聚合物材料的平均分子量为4000Da至16000Da,在第一预定温度范围内,人工骨复合材料呈橡皮泥状,在第二预定温度范围内,人工骨复合材料具有流动性,第二预定温度大于第一预定温度。根据本公开能够提供一种可自由塑形的人工骨复合材料及其制备方法。
本发明锌基硅相复合材料及其制备属于金属基复合材料及其制备领域,具体来讲是一种耐磨、耐热的硅相增强锌铝合金基体复合材料及其制备方法,其特征在于是一种球团硅相的锌基复合材料,在锌铝合金基体上均匀分布着球团硅相,球团硅相增强颗粒是在合金液体中自生形成,无需外加陶瓷增强颗粒,球团硅相的微观形态为多面晶体,其球团直径为40-90μm,该复合材料制备工艺简单,性能好,成本低,经济效益可观。
本发明属于纤维复合材料加工制造技术领域,具体涉及一种多核芯纤维复合材料内正交结构件及其制作工艺。一种多核芯纤维复合材料内正交结构件,包括壳体,壳体内设置有至少两个核芯室,每两个相邻的核芯室之间设置有核芯室墙体,核芯室墙体垂直于结构面板;壳体和核芯室墙体的材质均为碳纤维材料或玻璃纤维材料;核芯室内设置有由泡沫塑料构成的核芯;结构面板、核芯室、核芯室墙体和核芯通过纤维材料和泡沫塑料热成型工艺一体成型。制作工艺包括核芯前塑体制备步骤、核芯前塑体装模步骤以及纤维壳体和核芯架构一体成型步骤。本发明提供的多核芯纤维复合材料内正交结构件,具有强度高、重量轻、稳定性好以及适用性强等技术效果。
本发明涉及一种NaMnO2@Ni2O3复合材料及其制备方法和在钠离子电池中的应用,包括如下步骤:(1)将钠源、锰源加入水中,超声均匀获得混合液,然后将所述混合液进行喷雾干燥获得前体材料;(2)将所述前体材料与镍源混合,加入溶剂后进行球磨,球磨完成后烘干,然后进行煅烧,获得NaMnO2@Ni2O3复合材料。本发明方法制得的NaMnO2@Ni2O3复合材料为壳核结构,Ni2O3为壳层材料。本发明的NaMnO2@Ni2O3复合材料作为钠离子电池的电极材料,能够提高电池电化学性能。
一种用于航空航天领域的新型复合材料加工设备,包括底板、位于所述底板上方的横板装置、杠杆装置、设置于所述杠杆装置上的第一电机装置、设置于所述横板装置上的定位装置、设置于所述定位装置上的第一移动装置、第二移动装置、设置于所述第二移动装置上的第二电机装置。本发明能够在加压之前对复合材料进行有效的定位处理,以便将其稳固的夹持住,操作简单,使用便利,保证对其加压的效果;同时可以对复合材料进行有效的加压处理,加压效率高,操作简单,并且可以使得第一及第二支撑板同时相对反向移动,以便增强对复合材料加压的效果;最后,人工劳动强度小,自动化程度高,适合推广应用。
本发明公开了一种Fe3O4@Au复合材料的合成方法。本发明通过2‑羟基乙基醚与Fe2+和Fe3+进行络合后与碱溶液共沉淀反应,制备超顺磁性Fe3O4纳米材料,形成悬浊液。待Fe3O4纳米材料均匀分散后加入金离子与2‑羟基乙基醚的络合溶液充分混合,进一步反应,得到相应产物。本发明克服了现有技术中复合纳米材料尺寸难以控制、分散不均、Fe3O4与Au难以形成很好的复合材料的缺陷。Fe3O4@Au复合材料比表面积大、粒径均一、形貌可调、载药效果佳。本发明的合成方法简便易行,制备的Fe3O4@Au复合材料具有广阔的医学临床应用价值和前景。
本发明提供了Cu2‑xSe纳米片列阵@泡沫铜复合材料、制备方法及应用,本发明中在水热反应条件下Se粉可被水合肼还原形成Se2‑,Se2‑进一步与反应体系中的泡沫铜反应生成Cu2‑xSe纳米片,从而在泡沫铜表面原位得到Cu2‑xSe纳米片列阵,制备出Cu2‑xSe纳米片列阵@泡沫铜复合材料。与现有技术相比,本发明通过简单的一步水热法即可制备出Cu2‑xSe纳米片列阵@泡沫铜复合材料,制备工艺简单,原料低廉,设备依赖性低,产率高,适于开发工业化大规模生产应用。且所合成的Cu2‑xSe纳米片列阵@泡沫铜复合材料可作为HER催化剂,相比其他贵金属元素电催化剂,大大降低了HER电催化剂的成本。
本发明涉及一种复合材料电杆表面筛砂装置及利用该装置制备复合材料电杆表面防滑层的方法,所述装置包括两条平行于复合材料电杆(5)的轨道(1)及小车(2),小车(2)朝向复合材料电杆(5)一端设置有筛砂机(3),筛砂机管口(7)处连接有向下的出砂管(4),出砂管管口正对复合材料电杆(5)上方。利用该装置制备复合材料电杆表面防滑层的过程中,采用常规方法缠绕电杆后,直接在电杆表面均匀筛砂,使复合材料电杆(5)表面均匀粘附一层砂粒,砂粒一部分嵌入杆身树脂层,一部分外露,在后续加热固化过程中进一步与树脂层紧密结合,得到防滑层与电杆一体成型的复合材料电杆,砂粒嵌入电杆中,整体结构更加稳固。
本发明涉及结构可靠度优化领域,提供一种变刚度复合材料板壳结构精确建模分析与可靠度优化一体化设计方法,包括:利用一次可靠性近似方法、非线性近似函数以及二次可靠性近似方法对变刚度复合材料板壳结构进行高效可靠度优化。利用非均匀有理B样条函数对变刚度复合材料板壳纤维铺设路径进行精确建模;对变刚度板壳结构进行等几何分析,包括:基于等几何方法对变刚度板壳结构进行线性屈曲分析,推导设计变量以及随机变量对结构响应的全解析灵敏度。本发明能够实现变刚度复合材料板壳结构的建模、分析与可靠度优化的无缝对接,显著提高其可靠度优化效率及准确性,大幅缩短研发周期。
本发明公开了一种陶瓷结合剂、陶瓷金属复合材料及其制备方法、复合材料承烧板,属于超硬材料制品制造技术领域。该陶瓷结合剂由以下质量百分比的组分组成:50?70%的SiO2、15?25%的Al2O3、5?10%的H3BO3、5?10%的MgO、3?8%的Na2CO3、1?2%的CaF2,原料成分简单,结合强度高,高温下稳定。该复合材料承烧板由以下质量百分比的原料制成:25?35%的上述陶瓷结合剂、5?10%的金属结合剂、55?65%的氧化铝或白刚玉、1?5%的水玻璃,该复合材料承烧板将陶瓷无机物与金属很好的匹配,达到理想的传热速度,稳定烧结制品的性能。
本发明公开了一种超细金刚石?石墨烯复合材料的制备方法,是将超细金刚石与石墨烯混合形成分散液,通过抽滤装置抽滤成膜后,在800~1200℃真空热处理0.5~2h得到超细金刚石?石墨烯复合材料。通过本发明的方法制备的超细金刚石?石墨烯复合材料,金刚石表面石墨化,与石墨烯形成碳碳键合,性能稳定。该复合材料对实现金刚石和石墨烯在超细磨料工具、超级电容器、场致发射显示器、半导体器件等领域的应用具有十分重要的科学意义和工程价值。
本发明公开了一种C/C-SiC复合材料真空隔热板的制备方法,首先在包覆有石墨纸的保温芯材表面制备一层碳纤维预制体;再采用化学气相渗透法在碳纤维表面制备一层热解碳;然后采用熔融硅浸渗法,将制备好的样品放入石墨坩埚,用Si粉包埋,将坩埚放入真空炉中加热,反应温度为1450-1550℃,采用化学气相渗透法沉积碳化硅层填封残余微裂纹,最后在复合材料外壳底部开一个小圆孔,在真空环境下用熔料填封小孔,得到C/C-SiC复合材料真空隔热板。通过该方法所制得的C/SiC复合材料真空隔热板材料能够在1500℃以上环境下使用,具有低的热导系数。
本发明公开了一种花状Au?SnO2复合材料及其制备方法和应用,所述花状Au?SnO2复合材料的尺寸为1~2μm,它由纳米金负载在由30~60nm?SnO2纳米片自组装形成的花状二氧化锡的表面而成。其制备方法包括以下步骤:首先通过水热法合成由SnO2纳米片自组装成的花状SnO2,将其作为前驱体,然后对其进行Au负载,得到花状Au?SnO2复合材料。本发明涉及的制备方法简单,反应条件温和,制备的花状Au?SnO2复合材料尺寸可控、比表面积高,将其制备成气敏元件,对甲醛气体表现出了选择性好、灵敏度高、响应?恢复时间短等优点。
本发明属于高分子复合导电材料领域,公开了一种NR?CNF?CNT导电纳米复合材料及其制备方法和应用。该复合材料采用下列方法制备得到:a.CNF悬浮液的制备;b.CNF?CNT纳米杂化物的制备;c.NR?CNF?CNT导电纳米复合材料的制备。该复合材料可用于制备柔性导电材料,具有较好的应用前景。
本发明提供了一种Nb?Ti?Zr?Nb5Si3复合材料,由以下质量百分比的原料制成:Ti?5%~15%,Zr?3%~8%,Nb5Si325%~55%,余量为Nb。本发明还提供了一种制备该复合材料的方法,包括以下步骤:一、按质量百分比称取各原料,然后将所称取的原料球磨混合均匀,在真空条件下烘干后,得到混合粉末;二、压制成型,得到坯料;三、将坯料装入壳体中,抽真空后密封壳体;四、热等静压烧结,得到Nb?Ti?Zr?Nb5Si3复合材料。本发明复合材料具有高强度、高韧性和优良的抗氧化性能等特点,能够在高温及超高温空气环境中使用。
本发明公开了一种制备高能低温球磨连续挤压复合材料的方法,具有如下步骤:1)制备改性六钛酸钾晶须;2)制备复合填料:将改性六钛酸钾晶须与聚甲醛均匀混合后装入高能球磨罐体,改性六钛酸钾晶须与聚甲醛的质量比为1~10:9~30,抽真空后,在-150~-50℃的温度下球磨制备复合填料;3)制备复合材料:将超高分子量聚乙烯和复合填料在高速混合机上混合均匀,在连续挤压装置上连续挤出复合材料,其中超高分子量聚乙烯和复合填料的质量比为10~7:1。本发明还公开了一种通过上述方法制备的复合材料。本发明实现连续挤压技术的纳米化加工,扩大了现有连续挤压技术的原料选取范围,并且可以用于开发高性能金属基和高分子基复合新材料。
本发明涉及一种利用热处理和合金化改善TiAl 金属间化合物基复合材料力学性能的方法。本发明的方法,包 括以下步骤,取摩尔百分比35-55%的Ti粉、35-50%的Al 粉、3-10%的Nb粉、0-5%的B粉,采用热爆法制得TiAl 基合金粉末;所述的TiAl基合金粉末加入重量百分含量为5 %-20%的TiC陶瓷颗粒,采用放电等离子烧结法,制得 Ti2AlC/TiAl复合材料;所述的 Ti2AlC/TiAl复合材料进行热处 理。采用本发明的处理方法,可以显著提高TiAl金属间化合 物基复合材料的弯曲强度和断裂韧性,改善其力学性能。
本发明利用溶胶-凝胶法结合铝热反应原位合成制备了FeNiCrTi/NiAl-Al2O3纳米复合材料。该复合材料具有较高的高温强度、室温韧性,良好的抗氧化和抗热腐蚀性能等综合性能。本发明的方法包括:点燃铝热剂,从而产生处于熔融状态的高温熔体;把所述高温熔体注入到预置的速冷模具中,从而制得FeNiCrTi/NiAl-Al2O3纳米复合材料。所述铝热剂由Fe2O3、NiO、Cr2O3、CrO3、Al、TiO2凝胶组成。该复合材料具有晶粒细小的特点。
本发明适用于复合材料技术领域,提供了一种碳纤复合材料的制备方法及碳纤复合材料,该碳纤复合材料的制备方法包括以下步骤:将空心玻璃微珠粉、环氧树脂、超纤材料、偶合剂进行捏合,得到填充材料;将填充材料置于模具中进行加压热成型处理,得到所述碳纤复合材料。本发明实施例提供的一种碳纤复合材料的制备方法,通过采用空心玻璃微珠粉、环氧树脂、超纤材料、偶合剂作为原料,其制得的碳纤复合材料比重轻,加热加压时不易热变形,不发生二次发泡现象,可用作为碳纤自行车、羽毛球拍、鞋底等材料。
一种自润滑铝基复合材料及其制备方法,本发明涉及铝基复合材料领域,具体涉及一种自润滑铝基复合材料及其制备方法。本发明是要解决现有含润滑剂复合材料由于含油多孔或者是润滑剂强度不足,导致复合材料强度不够,最终应用范围被严重限制的问题。材料按体积分数由15%~35%钛硅碳、1%~10%六方氮化硼和55%~70%铝合金基体组成。方法:一、备料;二、双级球磨混粉;三、预制体制备;四、低温烧结;五、经脱模后即得到自润滑复合材料。本发明通过调整钛硅碳、六方氮化硼和铝基体粉末的尺寸及配比,经过双级球磨处理,利用低温粉末冶金法成功制备出具备高强、自润滑特性的铝基复合材料,充分发挥两种润滑剂组元的协同润滑作用。
本发明提供了一种玻纤复合材料用环氧树脂及其制备方法和应用、玻璃纤维复合材料,属于玻纤复合材料技术领域。本发明提供的玻纤复合材料用环氧树脂与玻纤复合时,其环氧有机端大分子结构充分与基体树脂纠缠,环氧基团参与基体树脂三维网络固化构建,其硅羟基端在高温固化条件下与玻纤表面羟基反应化学键合,将树脂层与玻纤表面紧密结合;亲油无机纳米粒子可填充修复玻纤表层缺陷,形成榫卯结构提升玻纤复合材料轴向剪切强度,亦可提升环氧基体树脂的韧性与复合材料的耐湿热性,最终达到提升玻纤复合材料界面结合强度的目的。
本发明公开了一种聚酰胺/硅酸盐纳米复合材料及其制造方法,复合材料各原料组分的组成(重量份数)为聚酰胺单体100,硅酸盐0.05~30,分散介质1~600,助分散剂0.02~0.5,离子化助剂0.01~1.0,通过离子交换和聚合两个过程制备纳米复合材料,具有较好的物理机械性能和耐热性,使刚性和韧性达到统一,解决了现有技术中原材料受到限制、生产成本高及反应周期长等问题,具有原材料广泛易得、生产成本低和材料力学性能优良等优点,广泛适用于化工等领域。
Sn‑MOF复合材料与SnS2‑C复合材料及其制备方法和应用,涉及电池电极材料技术领域,本发明在50℃左右的低温水浴条件下制备了微米级的呈多孔六面体形状的Sn‑MOF复合材料,Sn‑MOF复合材料的制备反应温度较低,反应过程安全性高且能耗低,并以上述Sn‑MOF复合材料为基础,首次采用双温区固相法制备了MOF衍生多孔碳框架与SnS2纳米片嵌合的复合材料——SnS2‑C复合材料,上述SnS2‑C复合材料的总体制备工艺流程较短并且简易可行,适于规模化生产应用。
本发明涉及一种铜基复合材料的塑性成形方法及铜基复合材料板带材的生产方法,属于金属制品的塑性加工领域。该铜基复合材料的塑性成形方法包括以下步骤:将圆棒形铜基复合材料在温度为900‑1000℃下先挤压成方棒料,然后将方棒料轧制或锻造成板带材。将圆棒形铜基复合材料直接进行塑性成形(锻造或轧制)时,材料受力由点变化到面,容易发生受力不均的现象,由此导致材料内部应力场和应变场分布不均匀,容易出现裂纹。本发明提供的铜基复合材料的塑性成形方法,将圆棒形铜基复合材料挤压成方棒料,方棒料在塑性变形时材料内部的应力场和应变场分布相对均匀,制品不易开裂,可有效解决圆棒形铜基复合材料难以进行塑性变形的问题。
本发明涉及一种用于测量温度的荧光复合材料,包括在光源激发下发出Yb3+特征荧光的有机稀土配合物K[Yb(Az)4]和基质材料,有机稀土配合物K[Yb(Az)4]包埋于基质材料中,有机稀土配合物K[Yb(Az)4]与基质材料的质量比为1:0.1~10000。本发明还提供了一种利用荧光复合材料进行荧光测量温度的方法。本发明选用含有Yb3+复合材料的Stokes位移一般较大,有效地避免了环境背景干扰;而且利用稀土复合材料作为温度传感材料,可以利用其荧光寿命长、荧光单色性好、荧光强度高的特点;所采用的荧光测量温度的方法由于采用荧光积分峰面积而非荧光强度作为考察对象,大大减小了测量中由于仪器或测量次数较少引入的随机误差。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!