本发明公开了一种微米级Al3Ti和Mg2Si增强镁基复合材料及其制备方法,属于合金材料制备技术领域,首先将钛粉压制成预制块,预热后加入到纯铝熔体,在750‑800℃发生原位反应得到Al‑xAl3Ti中间合金熔体,浇铸得到中间合金预制块;将纯镁、铝、锌和镁‑锰中间合金熔化,加入制备好的Al‑xAl3Ti中间合金预制块;升温后加入预热的Si粉预制块,熔解完成后进行半固态机械搅拌,使增强颗粒分散均匀,浇铸到预热的金属模具中得到微米级Al3Ti和Mg2Si增强镁基复合材料。本方法在制备过程中Al3Ti的形貌和尺寸可以通过Ti粉在Al熔体反应温度和时间调控;Al3Ti和Mg2Si增强相均为原位生成,与镁基体界面结合良好;制得的复合材料中Al3Ti和Mg2Si相起到协同强化的作用,具有优异的室温和高温力学性能以及高耐磨性。
一种ZIF‑67还原氧化石墨烯基吸波复合材料(CoC‑rGo)的制备方法,属于吸波复合材料技术领域。该制备方法,首先采用hummers法合成氧化石墨烯,在氧化石墨烯层间形成ZIF‑67;其次,合成ZIF‑67氧化石墨烯前驱体;最后,将其进行高温煅烧后处理,制备出ZIF‑67还原氧化石墨烯基吸波复合材料(CoC‑rGo)。本发明制备过程简单,具有普适性(FeC、NiC均适用此方法),适用于大规模生产;并且材料密度相对较小,产品性能优异,具有优异的吸波性能。
本发明公开了一种双壳层结构复合材料、其制备方法及包含该复合材料的锂离子电池。所述双壳层结构复合材料包括纳米硅内核,所述内核表面依次设有第一包覆层和第二包覆层,所述第一包覆层为镶嵌在所述内核表面的纳米金属颗粒,纳米金属颗粒之间存在孔隙;所述第二包覆层为复合材料最外侧的碳包覆层。本发明先在纳米硅颗粒表面原位包覆一层金属氢氧化物,再对其表面进行有机碳包覆,高温碳化包覆层有机碳的同时,第一包覆层的金属氢氧化物首先分解为金属氧化物,随后被第二包覆层的碳包覆层还原为纳米金属单质颗粒,留下大量的孔隙,得到双壳层结构复合材料。本发明工艺简单,该复合材料用于锂离子电池负极时,具有很高的比容量和优异的循环性能。
本发明提供了一种三元合金-还原石墨烯复合材料催化剂及其制备方法。所述的三元合金-还原石墨烯复合材料催化剂,其特征在于,包括氧化石墨烯以及负载在氧化石墨烯上的CuFePt三元合金。其制备方法包括:步骤1:制备氧化石墨烯固体;步骤2:室温下配制含有氧化石墨烯、硫酸铜和硫酸亚铁的水溶液;在含有氧化石墨烯、硫酸铜和硫酸亚铁的水溶液中加入过量的还原剂,并滴加氯铂酸水溶液进行反应,将所得的沉淀洗涤、干燥,即得三元合金-还原石墨烯复合材料催化剂(CuFePt/RGO)。本发明较相应的二元合金和一元纯铂催化剂的催化性能、抗中毒能力以及稳定性均有显著提高,在甲醇燃料电池中具有潜在应用前景。
本发明公开了一种聚合物-石墨烯-聚苯胺电磁屏蔽复合材料,主要由以下重量百分含量的原料制成:热塑性弹性体2.5%~15%,改性膨胀石墨2.5%~20%,苯胺5%~20%,加工助剂0%~20%,余量为基体树脂;所述热塑性弹性体为氯化聚乙烯、聚氨酯和苯乙烯系嵌段共聚物中的一种或几种;所述基体树脂是聚氯乙烯、聚烯烃、聚碳酸酯或丙烯腈-丁二烯-苯乙烯共聚物。另外,本发明公开了该复合材料的制备方法。本发明的聚合物-石墨烯-聚苯胺电磁屏蔽复合材料具有填料用量少,制备过程简单,导电和电磁屏蔽性能优异的特点,除满足日常生活中对电磁屏蔽材料的需求外,还可以应用到军事领域。
本发明公开了一种片组装立方体Ni(OH)2/GO复合材料的制备方法。将尿素、六水合硝酸镍加入氧化石墨烯分散液中,搅拌均匀后,在继续搅拌的状态下,滴加溶解有半胱氨酸的氧化石墨烯分散液,得到前驱体溶液。将前驱体溶液装入水热釜中进行热处理,随后用去离子水、乙醇反复冲洗,烘干后得到片组装立方体Ni(OH)2/GO复合材料。本发明具有原料易得、操作简单等优点,所得复合材料具有片组装立方体结构。
本发明公开了一种NiTiO3/C复合材料及其制备方法和应用,包括以下步骤:将无机镍源溶于水或者乙醇中,充分搅拌,得到含镍溶液,然后加入钛源、络合碳源。搅拌均匀后,置于喷雾热解炉中,进行喷雾热解,即得到NiTiO3/C复合材料。得到的NiTiO3/C复合材料,整体呈现为多孔的纳米球结构,钛酸镍和碳均匀复合。作为钠离子电池负极材料具有优良的电化学性能,且其制备方法简单,成本低廉,具有广阔的工业化应用前景。
本发明涉及一种负载TiO2生物复合材料、制备工艺及用途,所述复合材料是由钛酸丁酯、无水乙醇和卤虫卵壳制成的,其中钛酸丁酯、无水乙醇、卤虫卵壳量为V钛酸丁酯:V无水乙醇:m卤虫卵壳=5ml:20ml:0.2g。其制备工艺是分别定量取钛酸丁酯和无水乙醇,混合后滴加浓盐酸抑制水解,混合均匀,向其中定量加入已洗净烘干的卤虫卵壳,超声分散,过滤,用无水乙醇冲洗,将其放入5%NaOH溶液中水解,搅拌,过滤,用去离子水冲洗,干燥、炭化、高温焙烧,制得卤虫卵壳负载TiO2复合生物材料。其用途是降解甲醛。其优点是:生产工艺易控制,生产成本较低,制得的卤虫卵壳负载TiO2复合材料对甲醛具有良好的降解效果。
本发明涉及一种竹纤维增强聚乳酸抗氧化抗紫外全降解复合材料的制备方法及该复合材料,属于高分子复合材料技术领域。采用两步法熔融共混工艺,先制备改性竹纤维及其高填充母粒,再获得由母粒与聚乳酸直接熔融共混而成的复合材料,可以促进改性竹纤维在聚乳酸基体中均匀分散,获得具有良好分散性和加工性的竹纤维高填充母粒和均分散复合材料。该方法采取的生产工艺简便,易于规模化生产,且天然纤维原料广泛易得、生产成本低,复合材料综合性能优异,具有广阔应用前景。
本发明涉及一种制备(SiCNW)/(ZrC基体‑涂层一体化)改性C/C复合材料的方法,通过预先制备SiC纳米线骨架,使得通过PIP法制备ZrC陶瓷掺杂基体的同时可以在基体表面形成ZrC(SiC)陶瓷涂层。该方法能够使ZrC(SiC)陶瓷涂层与掺杂基体一体化成型,既能有效阻隔氧气气氛和高速粒子对基体的侵蚀,又能降低基体的氧化活性,同时缓解基体与涂层之间的热膨胀系数不匹配问题,从内至外整体上提升C/C复合材料长时间的抗烧蚀能力。本发明操作简单、制备温度较低、对基体损伤小、成本低廉,可为C/C复合材料在高温烧蚀环境中的应用提供一定的理论与实验助力,具有良好的经济及社会效益。
本发明公开了一种氨基改性膨润土Fe3O4SiO2复合材料及其制备方法和应用,包括以下步骤:首先对天然膨润土进行预处理,利用膨润土的阳离子交换性将其钠化,再进行铝柱撑扩展其层间距;然后将改性后的膨润土通过溶剂热法制备磁性膨润土;接着,参考Stober工艺对磁性膨润土进行SiO2包裹;最后利用3‑氨丙基三甲氧基硅烷(APTMS)进行氨基化改性,通过洗涤、干燥得到具有丰富官能团的复合材料。与现有技术相比,本发明首次公开氨基改性膨润土/Fe3O4/SiO2复合材料(BFSN)的制备方法,得到的改性膨润土具有超顺磁性,等电点为pH2.95,电负性较强,材料中铁元素在酸性条件下较稳定,吸附具有迅速、高效、可回收、可重复利用的特点。
一种血红蛋白状Co3O4/Ti3C2纳米复合材料的制备方法及应用,(一)、称取(NO3)2·6H2O、CO(NH2)2和NH4F加入到超纯水的烧杯中,混合成混合液;(二)、将单片层Ti3C2纳米粉体超声分散于超纯水中,超声30min成分散液;(三)、混合液和分散液转入水热反应釜聚四氟乙烯内衬中得到新的混合液;然后,保温、自然冷、离心、干燥得到前驱体;(四)、将前驱体粉末用玛瑙研钵研磨均匀后,加热,在Ar的保护下冷却到常温后取出,即可得血红蛋白状Co3O4/Ti3C2纳米复合材料,应用到电极制作上;该制备方法增大了Ti3C2的比表面积,为电荷传输和离子扩散提供了更多的活性位点,提高了Ti3C2的导电率,使得Co3O4/Ti3C2纳米复合材料电极的电化学性能明显优于纯的Ti3C2。
本发明涉及一种纳米氧化物催化剂包覆储氢合金复合材料的原位合成法。纳米氧化物催化剂包覆储氢合金复合材料中,储氢合金选用La1‑x‑yRExMgyNi3.0‑a‑bM1aM2b型储氢合金;纳米氧化物催化剂选用稀土氧化物和/或过渡金属氧化物;其中,x,y,a和b均为原子比,且0
本发明公开了一种微珠木塑新型复合材料,以重量份计,包括以下组分:空心微珠15-25份,聚乙烯回收料20-28份,马来酸酐1-2份,轻质碳酸钙1-2份,聚乙烯蜡1-3份,硬脂酸0.5-1.5份,木粉10-30份,植物纤维材料20-40份,分散相容剂0.5-1.5份。所述微珠木塑新型复合材料向原料中添加粉煤灰煅烧后的空心微珠,使制得的材料吸水率低,在潮湿环境下防水性能优异,且耐水性能良好,经水泡48h后无任何变化,同时所述微珠木塑新型复合材料还具有优异的机械性能:高静曲强度、弯曲弹性模量,并且耐热性能良好,加热后无气泡、裂纹、麻点等瑕疵,尺寸变化率小,材料不易变形,适合用作户外建筑围栏、木塑底板、家具等的原料。
本发明公开了一种石墨烯(GR)-剥离类水滑石片(ELDH)复合材料固定蛋白修饰电极及其制备方法和应用。本发明利用ELDH带正电及比表面积大等特点,通过静电吸引与带负电的剥离氧化石墨烯纳米片(GO)复合,再用水合肼还原,制得了GR-ELDH杂化物。采用滴涂法依次将GR-ELDH、血红蛋白和壳聚糖固定在离子液体修饰碳糊电极上,制备了石墨烯-剥离类水滑石片复合材料固定蛋白修饰电极。本发明所得修饰电极发挥了单层GR纳米片和ELDH的协同效应,GR纳米片增加了ELDH的导电性,抑制了其聚集和堆积;ELDH有效抑制了GR片层的重新堆叠,减少了片层间的接触电阻,提高了复合材料的电子传递速率,构筑的基于CTS/GR-ELDH-Hb复合膜的第三代三氯乙酸传感器,具有检测限低、检测范围宽和米氏常数小等优点。
本发明公开了一种用于木塑复合材料的界面改性剂的制备方法以及木塑复合材料的制备方法,其中界面改性剂的制备方法是在40-90℃、搅拌下将聚醚多元醇滴加至二异氰酸酯中,滴完后于40-90℃搅拌反应5-8小时,得到界面改性剂。木塑复合材料的制备方法是将催化剂加入到木粉中,然后依次加入界面改性剂、高密度聚乙烯、抗氧剂和抗紫外剂,混合均匀后得到混合料;将所述混合料加入双螺杆挤出机中挤出造粒,即得木塑复合材料粒料。本发明制备的界面改性剂含有活性的异氰酸根基团,能够改善木粉表面性质,改善木粉和塑料基体的相容性,增强复合材料的力学性能,特别是冲击性能,同时还能显著增强木塑复合材料的加工流动性能。
本发明提供了一种层状MoS2-Bi2MoO6纳米复合材料的制备方法,将二硫化钼粉末加入分层溶液中进行分层反应,形成混合液;在混合溶液中加入氧化剂进行氧化插层反应,过滤干燥后得到插层二硫化钼粉末;将插层二硫化钼粉末分散于蒸馏水中,加入Bi2MoO6粉末,搅拌混合,过滤干燥后得到MoS2-Bi2MoO6混合粉末;将MoS2-Bi2MoO6混合粉末与爆炸剂混合,进行爆炸反应,冷却至室温后取出爆炸反应产物;即得到层状MoS2-Bi2MoO6纳米复合材料。本发明利用芳香族硫醚的亲硫特性,降低二硫化钼原料粉末的层间范德华力,结合爆炸冲击对其进行插层剥离。采用此方法制备层状MoS2-Bi2MoO6纳米复合材料,操作简单,不需要复杂而繁琐的制备装置,不但制备效率高,产量大。
本发明公开了一种W18O49包覆碳纤维复合材料及其制备方法,包括以碳纤维为反应源,采用溶剂热法生长W18O49包覆碳纤维复合材料,通过溶剂热法在碳纤维上包覆生长单斜相的W18O49纳米材料,溶剂热制备过程中无需任何模板和催化剂,工艺简单,产率高,且成本低廉,适合批量生产;在碳布上直接生长W18O49纳米材料,所制备的纳米复合材料形态均一、包覆紧密,可以作为光催化、电催化、太阳能电池、柔性传感器,场发射和锂离子电池负极材料。
本发明提供一种铜‑石墨烯复合材料及其制备方法,所述制备方法至少包括以下步骤:(1)将石墨烯和适量铜混合,制成直径为0.5~1厘米的球状体;(2)将铜材置于真空装置中,对真空装置预热并抽真空至10‑4~10‑3Pa;所述石墨烯占石墨烯和总铜质量的0.1~5%;(3)充入保护气体至500~1000 Pa;真空装置加热至铜材熔融,将球状体投入到熔融状态的铜液中,搅拌,当球状体熔化后立即将铜液浇铸到模具中,在保护气氛围中冷却至室温,得到铜‑石墨烯复合材料铸锭。本发明所述的制备方法制备的复合材料导电性好,石墨烯分布均匀。
本发明公开一种Fe(III)‑Salen功能化纳米Fe3O4复合材料、制备方法和应用,制备步骤为:先采用溶剂热制备氨基功能化纳米Fe3O4磁性复合材料(NH2‑nFe3O4), 然后与含邻羟基取代苯甲醛缩合得到Salen功能化纳米Fe3O4(nFe3O4@Salen)、进一步与Fe(III)配位得到nFe3O4@Fe(III)Salen复合材料。本发明方法获得的产品呈粉末状,棕褐色,粒度分布均匀,性质稳定。溶剂热制备NH2‑nFe3O4克服了磁性材料溶液团聚的缺点,所得材料分散性好、磁性能高;采用氨基与含邻羟基取代苯甲醛缩合的得到Salen的反应快速、原料易得、产率高;材料富含氨基、羟基等官能团;拥有Fe(III)活性中心,使得类Fenton体系的固载到磁性Fe3O4材料上,具有广泛的pH适用范围,实现了材料的催化与磁性双重功能,有利于催化剂的分离回收。
本发明涉及一种复合材料带材,其具有弹性的和非弹性的区域,由该复合材料带材可分离或者可冲裁尿布封闭元件,该复合材料带材包括:无纺织物带材,其构成复合材料带材的第一外侧面;彼此间隔开的、可弹性伸缩的条带,其设置在无纺织物带材上;无纺织物材料,其在复合材料带材的第二外侧面上遮盖所述可弹性伸缩的条带;和至少一个由带钩材料构成的、非弹性的条带,其桥接在两个相邻的、可弹性伸缩的条带之间的区域。根据本发明,无纺织物材料与由带钩材料构成的条带的边缘搭接,并且所述由带钩材料构成的条带在其由无纺织物材料搭接的边缘上具有凸起,这些凸起延伸进入到无纺织物材料内。另外,本发明涉及一种用于制造复合材料带材的方法。
本发明涉及一种纳米尺度的高体积分数、轴向定向、贯通连续、高度正交有序排列的碳纳米管阵列-树脂基复合材料及其制备方法。它是以连续态毡体、特别是取向态的碳纳米管阵列毡体作为基础材料,采用高分子树脂液态浸渗成型的复合方法,将树脂直接渗透填充进入连续态、定向排列的碳纳米管阵列毡体之中,经固化,得到固体的碳纳米管-树脂基复合材料。本发明具有一般预制体、液态树脂成型工艺技术及其复合材料产物所具有的优点和特点,复合方法基本不影响、更不改变碳纳米管阵列毡体的结构、状态、物性,但是却将原先柔性的阵列毡体固定成为固体材料,甚至是刚体材料,其基本物性呈现正交各向异性。材料制备技术本身低成本、低能耗、操作简便、控制容易。
一种用半固态技术制备SIC颗粒增强复合材料电子封装壳体工艺,属于电子封装技术领域。在80℃-120℃对块状基体金属合金进行干燥处理后,在电阻炉中加热熔化,合金在完全熔化后保温静置20-30分钟;向保温静置后的合金液加入体积分数为10%-30%SIC颗粒,边加入边均匀搅拌,同时控制冷却到半固态温度区间,得到颗粒增强复合材料半固态浆料;半固态挤压成形电子封装壳体模具设计:电子封装壳体的成形腔设计在挤压模具凹模腔的底部边缘水平方向;最后用半固态挤压成形方法加工出SIC颗粒增强金属基复合材料电子封装壳体。优点在于,不但可以实现电子封装壳体的短流程、近终形的成形制造,而且可以降低能源消耗,提高产品综合性能。
本发明公开了一种高密度聚丙烯(PP)复合材料,该高密度聚丙烯(PP)复合材料专用于制造娱乐业使用的筹码,是由以下成分按重量比组成,均聚PP:8-40%,硫酸钡:40-80%,滑石粉:0-20%,碳酸钙:0-20%,PP-G-MAH:4-6%,POE-G-MAH:0-3%,分子量调节剂:0.5-2%,油酸酰胺:0.5-1.5%,芥酸酰胺:0.5-2%,PP蜡:0.5-2%,偶联剂:1-1.5%,颜料:0-5%。该高密度聚丙烯(PP)复合材料具有比重高、强度好,不易脆、耐磨性优良、手感好、表面光泽性高、无白斑,且颜色可根据需求进行调整的优点。
本发明提供了一种由无机粒子和树脂制得的无机粒子/高分子复合材料,其特征在于,所述的复合材料中还含有对所述的无机粒子表面进行改性的稀土改性剂,以及增加稀土改性剂表面改性作用的协效剂。这种复合材料具有良好的力学性能、耐热性能和外观。
本发明公开了一种水溶性纳米复合材料的制备方法,以具有CT造影功能的水溶性材料或者具有MRI造影功能的水溶性材料,通过化学试剂和反应试剂的作用下,得到复合结构的兼具MRI和CT造影功能的水溶性纳米复合材料,复合结构为具有CT造影功能的水溶性材料与具有MRI造影功能的水溶性材料通过静电吸附或者化学键合连接形成的结构。该制备方法具有制备简单、可控性好、生产效率高、易于工业化生产等优点。本发明还公开了该制备方法制备的水溶性纳米复合材料,具有水溶性好、结构性能稳定、生物相容性好、CT/MRI造影灵敏准确等优点,适用于作为CT/MRI双模式医学造影剂,特别适用于肿瘤细胞的双模式医学成像检测。
本发明属于化学分析技术领域,具体涉及一种石墨炔‑咪唑类离子液体复合材料、复合材料修饰电极及其制备方法和应用。本发明提供了一种石墨炔‑咪唑类离子液体复合材料,包括石墨炔和咪唑类离子液体;所述石墨炔的质量和咪唑类离子液体的体积之比为3.8~4.2mg:200μL。在本发明中,所述石墨炔和咪唑类离子液体均具有较高的导电率,石墨炔和咪唑类离子液体复合后能够提高复合材料的整体导电率,从而提高复合材料修饰电极的界面导电性,提高检测灵敏度;同时,所使用的疏水性咪唑类离子液体能够有效减弱复合材料在待检测液中的分散性,提高复合材料的稳定性及其与基底电极表面的结合性。
本申请实施例公开了一种钴碳复合材料、电极材料、锂离子电容器及其制备方法,所述钴碳复合材料包括碳基和钴颗粒,所述钴颗粒均匀地分布在所述碳基上,所述钴颗粒的大小为1‑10nm。本申请实施例提供的钴碳复合材料基于界面电荷存储的自旋电容效应进行能量存储,应用于锂离子电容器具有较高的功率密度、能量密度以及循环寿命。
本发明公开了一种轻质高强度碳纤维基复合材料鱼竿,其特征在于,所述鱼竿的制备方法包括如下步骤:(一)齐聚物溶液的制备,(二)基体树脂的制备,(三)改性碳纳米管/纳米硼纤维复合材料的制备,(四)预浸料的制备,(五)鱼竿的制备。本发明公开的制备方法简单易行,制备得到的碳纤维基复合材料鱼竿价格低廉、重量轻、钢性强、韧性好、牢固度高、抗静电性能和耐老化性能优异。
本发明属于复合材料技术领域,涉及一种SiC‑Ti3SiC2复合材料及其制备方法。碳化硅复合材料为二元复合材料,包括70~95vol.%六方碳化硅和5~30vol.%Ti3SiC2。制备时,将六方碳化硅和Ti3SiC2粉末在行星球磨机里混料;混合均匀后进行预压,预压压力为10~500MPa,预压10~60s;然后把预压后的样品进行热压烧结,烧结压力20~50MPa,烧结温度1100~2000℃,保温10~90min,制得碳化硅复合材料。本发明通过Ti3SiC2的添加可以提高SiC韧性及致密度,得到的SiC‑Ti3SiC2复合材料具有高韧性。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!