本发明涉及弹性体复合材料(35、36),所述弹性体复合材料(35、36)包括至少一个嵌入弹性体组合物中的增强元件(44、45),所述增强元件(44、45)包括由以下构成的组件:芳族聚酰胺或芳族共聚酰胺的多丝股线,以及聚酯的多丝股线。两个股线围绕彼此螺旋式缠绕并且增强元件(44、45)具有平衡的捻度。增强元件(44、45)的捻合系数K在5.2至6.5之间,K由公式K=(R x Ti1/2)/957定义,其中R为增强元件(44、45)的以转/米表示的捻度,Ti为增强元件(44、45)中多丝股线的以特克斯计的支数的总和;以及复合材料(35、36)中增强元件(44、45)的密度在80至145个增强元件/分米复合材料之间。
本发明公开了一种超过磷酸铁锂理论容量的磷酸铁锂基复合材料、其制备方法及用途。所述磷酸铁锂基复合材料包括内核以及包覆所述内核的复合包覆层,所述内核由无机碳基体及附着在所述无机碳基体上的磷酸铁锂构成,所述复合包覆层的组成包括一水七氧化三钒颗粒和无机碳。所述方法包括:1)制备由无机碳基体及附着在所述无机碳基体上的磷酸亚铁构成的复合前驱体;2)将复合前驱体与锂源和磷源混合,焙烧,得到内核;3)将内核、钒源、可溶性有机碳源、表面活性剂和溶剂混合得浆料,水热反应,得到磷酸铁锂基复合材料。本发明的磷酸铁锂基复合材料的振实密度高、扣电容量可达170mAh/g以上,且倍率性能良好。
本发明公开了一种氮磷掺杂碳纳米管@Mo/MoS2/MoP复合材料及其制备方法,以聚吡咯管、六水合钼酸钠、L‑半胱氨酸、一水合次亚磷酸钠为原料,采用简单水热法以及在氩/氢混合气气氛中磷化方法制备得到。本发明方法简单,成本低廉,所制备的氮磷掺杂碳纳米管@Mo/MoS2/MoP复合材料为三维分级复合异质结构,可作为电催化制氢的催化剂并展现了良好的电催化性能。
本发明公开了一种碳纳米管载NiCeOx复合材料催化剂及其制备方法与应用,所述方法包括:1)在装有5 mL无水乙醇的坩埚中加入10 mg酸化的多壁碳纳米管,常温下超声15分钟后加入0.1 M硝酸铈和0.1 M硝酸镍的水溶液,并控制加入的硝酸铈和硝酸镍溶液中Ni与Ce的原子比为Ni:Ce=1:0.33‑3,继续超声使液体蒸干后60℃真空干燥;2)将步骤1)制备好的干燥待用样品放入管式炉中,在N2/H2混合气氛中,其中H2的体积百分比为10%,于100℃‑500℃下反应0.5小时‑7小时,即可制得碳纳米管载NiCeOx复合材料催化剂。这种方法工艺简单、操作步骤少、条件温和可控,所制得材料的电化学性能优良,具有良好的应用前景。
本发明涉及一种硅基复合材料、其制备方法及包含该复合材料的锂离子电池。本发明的硅基复合材料包括碳基质,以及均匀分散在碳基质中的碳包覆枝状纳米硅;其中,碳包覆枝状纳米硅包括枝状纳米硅以及包覆在枝状纳米硅表面的包覆碳层。本发明所述方法包括:通过金属还原硅氧化物制备枝状纳米硅,然后通过均相包覆技术在硅表面原位包覆导电碳层,再通过融合技术将碳包覆枝状纳米硅分散于碳基质中。本发明所述方法工艺简单、加工性好,得到的硅基复合材料作为负极材料制成电池,具有高比容量,长循环寿命及高导电性的特点,首次可逆容量在1480mAh/g以上,首次库仑效率在87.1%以上,450次循环容量保持率在91.1%以上。
一种具有高稳定性的Zn4Sb3热电复合材料的制备方法,包括:1)将Zn4Sb3块体材料磨碎;2)配制无机盐溶液;3)将步骤1)中获得的Zn4Sb3小颗粒与步骤2)配制的无机盐溶液混合;4)将步骤3)获得的含有无机盐溶液的Zn4Sb3小颗粒烘干;5)将步骤4)获得的小颗粒烧结,得到致密块体,即获得结构稳定性提高的Zn4Sb3热电材料。本发明还提供一种通过上述方法获得的Zn4Sb3热电复合材料。
本发明公开了一种多巴胺改性玻璃纤维‑环氧树脂复合材料的制备方法,包括:配置多巴胺盐酸溶液,调节pH,将玻璃纤维加入多巴胺盐酸溶液中浸泡,避光振荡,将玻璃纤维清洗,烘干;将多巴胺改性的玻璃纤维与环氧树脂共混,得到复合材料,本发明采用多巴胺进行玻璃纤维的表面修饰改性,多巴胺聚合条件简单,环境温和,所得改性玻璃纤维表面的多巴胺形貌分布均匀,厚度可控。本发明中多巴胺自聚合反应流程简单,操作便捷,重复性好,成本低,可实现大规模玻璃纤维的修饰改性及应用。本发明基于多巴胺修饰改性玻璃纤维,通过多巴胺的功能基团与环氧树脂复合材料的有效结合,制备高性能多巴胺修饰玻璃纤维增强环氧树脂复合材料。
一种高强高导形变Cu?Cr?Ag原位复合材料的短流程制备方法,其步骤如下:(1)采用中频感应熔炼结合石墨模浇注的方法熔铸Cu?Cr?Ag三元合金铸锭;(2)将铸锭放入区域熔炼?定向凝固炉中进行定向凝固处理,使Cr枝晶沿轴向形成定向排列的微纳米级纤维;(3)对经定向凝固处理的材料进行多道次冷拉变形,使在定向凝固过程中形成的微纳米级纤维进一步细化成纳米级纤维;(4)采用最终时效热处理对材料的强度、电导率和延伸率等进行综合调控。本发明通过铸态组织控制形成连续的定向排列微纳米级纤维,结合冷拉变形、合金化和最终时效热处理,缩短了制备工艺流程,减少了冷变形应变量,显著增加了最终材料的尺寸,并使最终材料获得稳定和良好的使用综合性能,可拓宽形变Cu基原位复合材料在高新技术领域的应用范围。
一种SiO2@MIL-68(Al)复合材料的制备方法及应用,将SiO2分散到DMF中,然后加入BDC、AlCl3·6H2O和DMF进行反应得到最终产物。通过复合SiO2到MIL-68(Al)中,MIL-68(Al)的颗粒尺寸变小、分布变均匀,孔尺寸变小。此复合材料对水溶液中的苯胺能达到快速高效的脱除。
本发明涉及一种复合材料电缆线的制作方法,包括以下步骤:将碳纤维由纱架引出,进入第一浸胶区浸胶,使用的环氧树脂为耐热高力学性能环氧树脂;浸胶完成后碳纤维进入第一固化炉预固化,制得碳纤维复合芯,直径为5mm—12mm,调节温度使固化度达到85%以上;两侧玻璃纤维引出后分别进入第二浸胶区和第三浸胶区浸胶,使用的环氧树脂为耐高温耐候性能环氧树脂;浸胶后玻璃纤维通过缠绕区缠绕包覆在碳纤维芯外层,单侧厚度为0.5mm—2mm,缠绕速度通过伺服电机控制与拉挤速度相同步;碳纤维复合芯与玻璃纤维保护层复合后一起通过第二固化炉,调节温度使两者充分固化;复合材料电缆芯制品通过牵引机后,在收卷盘处收取。
本发明公开了一种碳纳米管‑蒙脱土自组装纳米粉接枝玻璃纤维增强复合材料的制备方法,包括如下步骤:将碳纳米管分散于非质子性有机溶剂,先后经有机胺改性、盐酸成盐反应得到碳纳米管铵盐;将蒙脱土与碳纳米管铵盐超声分散于水中,经过滤、反复水洗、喷雾干燥得到碳纳米管‑蒙脱土自组装纳米粉;将纳米粉超声分散于硅烷偶联剂溶液中,再均匀喷洒于玻璃纤维表面,真空干燥得到纳米粉接枝玻璃纤维预制体;再将预制体通过复合材料成型工艺复合树脂即得。本发明可以有效提高碳纳米管的分散性以及蒙脱土的层间距,且该纳米粉接枝于玻璃纤维,能够进一步提高其在复合材料中的分散性,提高树脂与纤维的界面粘合,从而提高纤维复合材料的力学和耐热性能。
一种复合材料公路护栏及其生产方法,由下列原料及重量份配比成:14份不饱和树脂、20份增强剂、少量固化剂、脱模剂和着色剂,50份填充料经充分捏合成粘接料后,一层玻璃丝布,一层粘接料间隔多层叠合辊压成片材,再在有加热装置的150-250吨液压机中模压成内埋钢筋和钢丝网的波形梁和栏杆外套等,可广泛应用于高等级公路两旁,作钢质护栏的替代物,具有节省钢材、成本低,表面光洁无锈迹、耐酸碱腐蚀等优点,是一种新颖的公路护栏。
本发明提供一种新型复合材料制作工艺,所述复合材料由辅助金属材料、母材、压轧黏合构成,其工艺为:辅助金属材料(可以采用不同工艺把黏合表面处理粗糙)→清洗(80-90℃的5-10﹪的金属除油剂请洗干净)→风干→碰焊到母材表面→放料→加热→清洁表面(压缩空气)→压轧→热处理→校平→开料,成品,本发明的优点在于:烹调器具的底部结构采用了传热金属板、导磁金属板使烹调器具加热更快、导热效果更好。
本发明涉及一种复合材料,其包含至少一种基础材料和分布在该基础材料中的至少一种填料粉末混合物,这里该填料粉末混合物包含填料粉末级分和至少一种另外的填料粉末级分,该填料粉末级分的平均粉末粒径(D50)选自1μm-100μm的范围,并且该填料粉末混合物在该复合材料中的总填料份额(填充度)高于50重量%。该复合材料的特征在于该另外的填料粉末级分具有选自1nm-50nm范围的另外的平均粉末粒径,和该另外的填料粉末级分在填料粉末混合物中的份额选自0.1重量%-50重量%的范围。已经发现能够在纳米级的填料颗粒的存在下,在低粘度时实现高的填充度。该复合材料特别适于作为浇注材料(铸型树脂体系)。
本发明提供一种与钢材相比耐磨损性和耐烧伤性高、冲击吸收性优异,并且与铸铁材料相比机械强度高的铁系复合材料以及该材料的制造方法。该铁系复合材料至少具有钢组织层(12)、铸铁组织层(14)、和在钢组织层(12)与铸铁组织层(14)之间对钢组织进行渗碳而成的渗碳组织层(13)。
一种制备含碳无机材料—聚合物复合材料的方法,其具体作法为:A.制备有机相 将0.01-100份重的聚合物单体加入其有机溶剂中,形成聚合物单体的有机溶液;B.制备无机相 将1份重的含碳无机材料溶解或分散于水中形成水溶液,再在水溶液中加入A步聚合物单体的聚合剂,形成无机溶液;该聚合剂为不与水发生反应的聚合剂,且其加入量为能使A步的聚合物单体完全聚合的量;C.将B步的无机溶液缓慢加入A步的有机溶液中,并充分搅拌反应,生成复合物胶体,对过滤后的胶体,清洗、干燥,即得。该方法操作简单,产率高,适合大规模工业化生产;制备的复合材料性能好。
本发明涉及具有光滑、美观的热塑性表面的复合材料模制品。本发明还涉及一种提高效率和减少有害气体污染物排放的制造复合材料模制品的方法,所述复合材料模制品包含复合材料纤维增强体,具有热塑性外层的热固性树脂材料。该方法包括以下步骤:(a)以空间分离的关系放置包括第一成型模具隔膜(5)的第一半模和包括第二成型模具隔膜(7)的第二半模(3),其中当第一和第二半模合起来时限定模具填充空间,以成型制品;(b)将热塑性片材(25)放入模具填充空间,其中热塑性片材的形状基本上与模具隔膜的形状一致;(c)将增强材料(33)放入模具填充空间;(d)闭合第一和第二半模,从而得到热塑性片材。
本发明提供了一种纤维增强碳化硅复合材料的制备方法,属于纤维增强碳化硅复合材料技术领域,采用真空加压浸渍辅助凝胶注模成型的方法,将碳化硅微粉分散到增强纤维内部,实现原位固化,素坯干燥脱脂后,采用有机物浸渍的方法,在多孔素坯内部引入碳源或碳化硅基体,最后渗硅烧结得到致密的纤维增强碳化硅复合材料。本发明还提供一种上述制备方法得到的纤维增强碳化硅复合材料。本发明的制备方法,将真空加压浸渍与凝胶注模成型的方法结合起来,能够实现碳化硅颗粒在增强纤维内部均匀、原位固化,相对其他制备方法,可以大大缩短生产周期;同时,采用有机物浸渍裂解的方法在多孔素坯中引入碳源或碳化硅基体,能够有效控制复合材料内部残硅量。
本发明涉及一种多孔硅材料/碳复合材料的制备方法,包括:将硅材料、碳源和水溶性盐在无水环境下混合,得到硅材料/碳源/水溶性盐混合物;将硅材料/碳源/水溶性盐混合物在惰性气氛保护下碳化处理,得到硅材料/碳/水溶性盐的混合物;用水将硅材料/碳/水溶性盐混合物中的水溶性盐溶出,制得多孔硅材料/碳复合材料。本发明还涉及一种碳包覆的多孔的硅材料/碳复合材料的制备方法。是在获得硅材料/碳/水溶性盐混合物后,将其与碳源再次混合均匀并在惰性气氛下碳化,使碳源形成碳包覆的硅材料/碳/水溶性盐复合材料,最后用水将其中的水溶性盐溶出,得到碳包覆的多孔硅材料/碳复合材料,用于制作锂离子电池负极,表现出了更高的电池容量及更好的电池循环稳定性。
本发明涉及一种TPU复合材料及其制备方法,所述TPU复合材料的芯部为丝线或棉线,在所述芯部的外表面包裹一层TPU材料,其制备方法包括:首先采用挤出机挤出TPU材料,然后通过包覆技术,将TPU包覆在丝线或棉线上成为另一种线,从而得到本发明的TPU复合材料,该材料可缠绕成线卷或直接制成纺织品。本发明通过将丝线或棉线和TPU材料共同纺织,制得了一种透气性更好、机械强度更高的TPU复合材料,该复合材料还具有耐磨、阻燃、耐黄变、防霉抗菌等优点。
本发明涉及一种碳化钨金属陶瓷复合材料耐磨球阀,包括阀球、阀座、阀体,其特征是在流体通过的流道内壁均喷涂有碳化钨金属陶瓷复合材料耐磨涂层,同时在阀球与阀座的密封副表面上均喷涂有碳化钨金属陶瓷复合材料耐磨涂层。本发明的优点是:成本低、寿命长、使用可靠并具有较高耐磨性能。碳钢材料球体具有成本低、加工性能好等优点,而碳化钨耐磨外层的耐磨性能良好,碳钢与碳化钨耐磨层结合的稳定性牢固性也较好,而且,为了保证碳化钨涂层与碳钢基体之间具有较高的结合强度,在喷涂前首先对待喷涂件进行碳化钨离子注渗,形成过渡层。另外由于设置有过渡圆弧面,进一步保证了碳化钨涂层与碳钢本体之间的结合力。
本发明涉及一种CdS/MoSx复合材料及其一步电化学沉积制备方法和应用。该制备方法包括如下步骤:以自支撑材料为基底,利用含有镉源、钼源和硫源的电解液进行电化学沉积,即得所述CdS/MoSx复合材料。本发明采用过渡金属硫化物MoSx来取代贵金属作为助催化剂,解决了贵金属的稀缺和高成本的问题,通过电化学方法一步电沉积将CdS/MoSx固定在基底上,可实现CdS/MoSx的可控合成;制备得到的CdS/MoSx复合材料可充分利用可见光,增加太阳能的转换利用率,对于可见光区域有很好的光响应,具有较佳的光催化活性;且易于回收,为CdS的光催化产氢技术提供了一种全新的途径。
本发明属于复合材料、材料基因工程技术领域,公开了一种确定复合材料基因组和复合材料力学性能关系的方法,基于材料基因组结合深度学习预测复合材料力学性能的方法,从材料组分上来预测碳纤维复合材料的力学性能,比传统的宏观理论推导或仿真模拟更为准确且省时,同时更能够反映出碳纤维复合材料的组分参数与力学性能之间的关系。
本发明公开了一种硅藻土@NH2‑MIL‑53(Al)纳米复合材料的制备方法及其应用,所述硅藻土@NH2‑MIL‑53(Al)纳米复合材料是通过在硅藻土基体中负载具有纳米棒状结构的NH2‑MIL‑53(Al)制备得到的。硅藻土的引入可明显提升NH2‑MIL‑53(Al)吸附去除刚果红的性能,达到高效去除的目的。本发明制备得到的硅藻土@NH2‑MIL‑53(Al)纳米复合材料3h即可达到吸附平衡,对300mg/L的刚果红溶液的最大吸附量可达363.39mg/g,去除率接近97%。
本发明公开了一种介孔复合材料Fe3O4‑Co3O4及其制备方法和在降解气态污染物中的应用。将铁盐和钴盐分别溶解于水溶液中,得含有铁的溶液和含有钴的溶液;将含有铁的溶液和含有钴的溶液混合并充分搅拌后加入含有F127的水溶液,将最终的混合液进行干燥;将干燥后的产物于惰性气体或者空气条件下煅烧,冷却至室温,研磨,得介孔复合材料Fe3O4‑Co3O4。本发明所述的介孔复合材料Fe3O4‑Co3O4具有吸附降解污染物的能力,因此能够实现有效方便的降解异丙醇等气态污染物,从而达到净化空气的目的。
本发明公开了一种木质素磺酸钠修饰的g‑C3N4/木炭凝胶复合材料的制备方法及应用,该制备方法是将天然木材切割成木材片,并置于NaOH和Na2SO3的混合溶液中处理6小时,再用H2O2处理3小时,得到主要成分为纤维素的木材凝胶;将所述木材凝胶浸渍于饱和尿素溶液中,冷冻干燥,再以550℃煅烧2小时,得到g‑C3N4/木炭凝胶;采用木质素磺酸钠进行修饰,从而得到木质素磺酸钠修饰的g‑C3N4/木炭凝胶复合材料。该木质素磺酸钠修饰的g‑C3N4/木炭凝胶复合材料不仅吸附能力强、传质速率快,能够对水体中的铅、镉、铜离子进行快速、高效和多次去除,而且制备简单、分离回收方便。
本发明提供了一种制备多孔金属基体复合材料的方法。该方法包括将金属粉末、多个无机颗粒以及多根不连续纤维混合形成混合物,其中金属粉末包括铝、镁、铝合金或镁合金。该方法还包括将混合物烧结,以形成多孔金属基体复合材料。通常,无机颗粒包括多孔颗粒或陶瓷泡或玻璃泡,并且无机颗粒和不连续纤维分散在金属中。金属基体复合材料具有低于金属的密度和可接受的屈服强度。
本发明涉及一种高性能锂离子电池负极Si@N‑C复合材料及其制备方法。该方法是先以马尾草为原料制备得到SiO2,经还原得到Si材料;然后以吡咯为主要原料在Si材料表面包覆聚吡咯,经煅烧制备得到Si@N‑C复合材料。本发明使用的原料简单易得、价格低廉、环境友好,制备过程中无有毒有害物质生成, 并且有效的解决了杂草马尾草的合理利用问题,经济环保, 并且本发明提取硅材料的方法对从其它含硅酸盐植物中提取硅材料具有一定的普适性;另外,本发明通过高分子聚合物聚吡咯热解实现杂原子N掺杂的C包覆,大大提高了Si材料的导电性和稳定性,从而提高了Si@N‑C复合材料的锂离子电池性能。
本发明公开了一种陶瓷-聚合物复合材料,包括聚合物基体和微波介质陶瓷粉体填料,其中陶瓷粉体填料为(A0.5-2xBi0.5)BO4-x、(Bi1.5C0.5-y)Zn0.5Nb1.5O7-y、以TiO2包覆陶瓷表面形成的具有核壳结构的(A0.5-2xBi0.5)BO4-x@TiO2或(Bi1.5C0.5-y)Zn0.5Nb1.5O7-y@TiO2陶瓷粉体中的任意一种或者至少两种混合物。该复合材料体系在微波频段内具有较低的介电损耗(tanδ≤0.02),并且其介电常数温度系数在±100ppm/℃范围内可调,是一类非常有价值的埋入式电容用复合材料。
本发明涉及一种碳@Fe2O3@碳微球复合材料及其应用,所述碳@Fe2O3@碳微球复合材料由正硅酸四乙酯,氨水,间苯二酚,甲醛,铁盐和多巴胺制备而成,制备出的碳@Fe2O3@碳微球直径为200~300 nm,所述微球碳内壳厚度约为15~30nm,所述的Fe2O3中间层厚度为30~60nm,所述碳外壳的厚度为3~7nm;所述碳@Fe2O3@碳微球纳米复合材料用作锂离子电池的负极材料。本发明的优点在于:本发明的碳@Fe2O3@碳微球材料应用于锂离子电池,极大改善了锂电池得容量保持率,而且工艺简单、重现性好、易于实施。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!