本发明提供一种酚醛树脂基复合材料的制造方法,其步骤如下:(1)将贝壳洗净后烘干,冷却后得到干燥后贝壳,将干燥后贝壳浸泡于氢氧化钠溶液中,取出,洗涤后干燥,研磨后得到贝壳粉;(2)将贝壳粉加入硅烷偶联剂溶液中搅拌,超声处理得到改性贝壳粉;(3)将硫酸钙晶须配制成悬浮料浆,搅拌后加入硬脂酸钠,继续搅拌后取出,洗涤、过滤,将滤饼干燥得到改性硫酸钙晶须;(4)将酚醛树脂、改性贝壳粉、改性硫酸钙晶须加入搅拌釜搅拌,烘干至恒重,冷却得到混合料;(5)将混合料放入模具内,将模具放入热压机中,预压后泄压放气,然后热压,烘干,冷却得到复合材料。本发明制备出的复合材料具有较好的硬度和力学性能。
本发明公开了一种CoS2/氮掺杂石墨烯复合材料构建电化学传感器在葡萄糖电化学分析中的应用,属于无机材料合成及应用技术领域。该复合材料的制备是在碱性环境下添加水合肼使氧化石墨烯转化为氮掺杂石墨烯,然后加入硝酸钴以及L‑半胱氨酸并采用水热反应制备而成。该制备方法简单,试剂用量少,耗能低;反应在水相中进行,环境友好;反应条件温和,产物分离纯化方便。本发明复合材料以比表面积大、热稳定性和导电性高、生物相容性强的氮掺杂石墨烯为基底材料,负载电子传递速率快的CoS2纳米材料,制备出在葡萄糖的电化学氧化还原反应中催化效果较好的修饰剂,使得其构筑的电化学传感器可用于高灵敏度高选择性检测微量葡萄糖。
本发明涉及一种溶剂热一步合成磷酸铁锂-磷酸钒锂复合材料的方法,包括将铁源化合物、钒源化合物、锂源化合物、磷源化合物和碳源同时加入到反应釜中,通过调控温度和反应时间,一步制备出磷酸铁锂-磷酸钒锂复合材料的前驱体,在经过低温热处理,制得磷酸铁锂-磷酸钒锂正极复合材料。本方法中原材料通过溶剂热法一步制备出磷酸铁锂-磷酸钒锂,是一种省略技术要素的发明,制备工艺简化,且热处理温度降低,使处理更加安全,且成本降低,制备出的磷酸铁锂-磷酸钒锂的的放电比容量在低温时有明显的提高。
本发明公开了一种三明治型SiC复合材料及其制备工艺。该复合材料是将Cu50Zr40Ti10片状非晶合金粉末与球形SiC/NiP复合粉末均匀混合后,通过热压成型而成。Cu50Zr40Ti10片状非晶合金粉末是对球形Cu50Zr40Ti10非晶合金雾化粉末进行球磨而获得。球形SiC/NiP复合粉末是通过化学镀方法在球形SiC粉末上包裹NiP非晶合金镀层而成。该复合材料的线膨胀系数为7.6×10‑6 K‑1、导热系数为106.6W/m·K以及密度为4.25g/cm3。
本发明提供了一种生物活性玻璃陶瓷纤维/PEEK树脂复合材料人工牙及制备方法,其制备方法包括四个步骤:制备羟基磷酸钙晶体玻璃陶瓷碎块,制备生物活性玻璃陶瓷纤维,制备生物活性玻璃陶瓷纤维/PEEK树脂复合材料人工牙,人工牙植入牙槽骨的部分表面层处理。根据本发明方法制备的生物活性玻璃陶瓷纤维/PEEK树脂复合材料人工牙产品,既有足够的力学性能,又具有很好的生物相容性,其力学性能、生物相容性和骨结合强度均大大优于常规人工牙产品,而且整个制备工艺流程简单,操作方便,非常值得大力推广。
本发明提供了一种聚2‑异丙烯基苯并噁唑纳米复合材料及其制备方法,所述复合材料为含钛酸钡改性石墨烯的聚2‑异丙烯基苯并噁唑纳米复合材料,其制备方法包括制备钛酸钡改性石墨烯、制备聚2‑异丙烯基苯并噁唑和制备含钛酸钡改性石墨烯的聚2‑异丙烯基苯并噁唑纳米复合材料步骤。本发明的有益效果为:利用水热法同时实现钛酸钡的制备和氧化石墨烯的还原,通过溶液共混法制备含钛酸钡改性石墨烯的聚2‑异丙烯基苯并噁唑纳米复合材料,成功解决了氧化石墨烯还原过程中的团聚和聚2‑异丙烯基苯并噁唑聚合物介电常数偏低难题,为进一步制备均相稳定、介电性能优异的聚2‑异丙烯基苯并噁唑聚合物复合材料薄膜奠定了基础。
本发明涉及Z型异质结Co9S8/NH2‑UiO‑66复合材料的制备方法及其在光催化中的应用。所述的Z型异质结Co9S8/NH2‑UiO‑66复合材料是将Co9S8纳米粒子负载到金属有机骨架NH2‑UiO‑66表面,形成异质结。制备方法如下:采用水热法分别合成NH2‑UiO‑66和Co9S8纳米粒子;将NH2‑UiO‑66和Co9S8纳米粒子分散在乙醇溶液中超声作用,然后蒸发乙醇溶剂诱导Co9S8纳米粒子在NH2‑UiO‑66上复合,真空干燥得目标产物。本发明提供的Co9S8/NH2‑UiO‑66复合材料对Biginelli反应展示出良好的催化性能。
本发明涉及一种多孔活性炭与α‑Ni(OH)2纳米复合材料及其制备方法,由活性炭与α‑Ni(OH)2复合得到,所述的复合材料在微观上是多孔结构,孔径为4~6 nm;制备步骤:1、将活性炭、六水合硫酸镍、氢氧化钠溶于水中,搅拌并超声处理;2、水热反应釜中进行水热反应;3、离心收集沉淀,用乙醇和水进行洗涤,真空干燥后研细;4、称取粉末,在超声波作用下分散到硫化钠溶液中;5、转移到水热反应釜中进行水热反应;6、通过离心收集沉淀,用乙醇和水洗涤,真空干燥后得到。本发明的复合材料具有多孔、比表面积大、导电性能良好以及结构稳定的特性,作为超级电容器的电极材料,在电流密度为1 A g‑1时,其比电容高达1653 F g‑1,表现出较高的比容量。
本发明公开了一种具有磁阻转换行为的CoFe2O4‑CrO2复合材料的备方法,首先在特定条件下制备出CoFe2O4‑CrO2混合粉末,将其在7MPa下压制成圆形薄片得到目标复合材料。本发明制得的复合材料不仅比纯CrO2拥有更大的矫顽场,而且还能产生磁阻转换行为。本发明在此类领域的研究中有一定突破作用,有助于探索磁阻转换行为的微观物理原理,并且本发明操作简单易制备且重复性高。
金属陶瓷表面复合材料及其生产工艺属金属基复合材料及其生产工艺。本发明解决了用普通铸造方法使金属基体表面与陶瓷复合,一次成型为产品的问题。本发明的生产工艺为:将陶瓷材料粉碎成粒度,按比例、组分、依顺序加料混合,预热砂型,将混合料浆喷刷到砂型表面发泡,合箱静置,将金属基体熔化浇铸成型。本发明简化了生产工艺过程,能一次成型得到最终产品,能提高金属表面的耐磨、耐热等性能,且节约材料。本发明用于黑色与有色金属表面、复合材料的生产。
三嗪系成炭-发泡剂、其合成方法及以其为原料制成的阻燃聚合物复合材料,涉及一种成炭-发泡剂、其合成方法及以其为原料制成的阻燃聚合物复合材料。本发明要解决现有方法合成的成炭-发泡剂极性大,吸湿性强,加工过程中与聚合物的相容性较差,导致材料快速挤出时表面光滑度差的问题。三嗪系成炭-发泡剂的结构通式如图。方法:向三聚氯氰中加溶剂,滴加醇胺、烷基胺和缚酸剂,生成一取代物;生成二取代物;将二胺和缚酸剂加入,升高温度,抽滤、水洗、烘干得到三嗪系成炭-发泡剂。阻燃聚合物复合材料由热塑型树脂、无卤膨胀阻燃剂和加工助剂组成。提高三嗪系成炭-发泡剂与非极性聚合物的相容性,可以更好地分散在聚合物中,应用于阻燃领域。
本发明提供了一种钛酸钾晶须增强聚酰亚胺复 合材料及其制备的方法。它是用聚合物重复单元结构为上式的 聚酰亚胺及其共聚物的先母料聚酰胺酸溶液与钛酸钾晶须(K2O-6TiO2)、填料石墨粉、二硫化钼等经湿法混合, 再由脱水剂醋酐和催化剂三乙胺作用进行化学亚胺化反应, 再经200~240℃热处理制成粉状聚酰亚胺复合材料。将该粉状复合材料盛入模具, 在360~400℃和60~80MPa条件下制成模压制品。它具有优良的力学和耐热性能。
本发明提供了一种制备纳米氮化二铬-氧化铝 (Cr2N- Al2O3)复合材料的方法,该方法包括:以沉淀法制备纳米 Cr2O3/Al2O3复合粉体,作为起始原料;原位选择氮化法制备组成 均匀的纳米 CrN/Al2O3复合粉体;热压烧结制备纳米 Cr2N- Al2O3复合材料。用该方法制备得到的 Cr2N- Al2O3中Cr2N所占体积百分 数为4~35vol%,纳米Cr2N- Al2O3复合材料的组成均匀、晶粒尺寸小、密度接近于理论密度, 而且强度高,韧性好,硬度大。
一种热固性-热塑性复合树脂基连续纤维增强复合材料,是采用如下的组分制备的:热固性树脂100~300,热塑性树脂100~600,连续长纤维增强材料100~500,稀释剂50~300,引发剂10~30,促进剂0.5~5,抗氧剂1~10,其他助剂1~100,重量份。本发明将热固性和热塑性树脂纤维增强复合材料的优点结合起来,提供了一种浸渍工艺简单,具有互穿网络结构,可加工的纤维增强复合材料。
本公开了一种基于3D打印技术制备拓扑结构钛基复合材料的方法,采用气体雾化法将等轴晶组织的钛基复合材料铸锭制成高品质钛基复合材料粉末,再利用3D打印技术对制得的粉末打印出具有gyroid曲面结构的多孔钛基复合材料。本发明制备的钛基复合材料,在700℃条件下的抗拉强度达621MPa以上,延伸率达15.4%以上,同时具备优异的室温强度及塑性。此外,本发明组织为等轴晶组织,且材料成分均匀,gyroid曲面的多孔拓扑结构能够改善应力分布,具有广泛的应用前景。
本发明公开了一种层状増韧钨基复合材料及其制备方法,所述层状増韧钨基复合材料是由基体层、中间层和增韧层交替层叠构成,具体是以增韧层为中心,在所述增韧层的两侧由内至外分别依次设置中间层和基体层,以上述结构作为一个重复单元;所述层状増韧钨基复合材料由三个重复单元层叠构成,即所述层状増韧钨基复合材料由上至下依次为基体层、中间层、增韧层、中间层、基体层、中间层、增韧层、中间层、基体层、中间层、增韧层、中间层、基体层层叠构成。本发明层状增韧钨,与纯钨相比,其韧性提高1‑2倍。本发明中的层状増韧钨基复合材料对聚变堆装置中的第一壁结构具有重要的实用意义。
本发明涉及一种多铁复合材料及制备柔性多铁复合材料的方法,利用固相烧结法,将两种单相氧化物粉末La0.5Y0.5FeO3和LaY2Fe5O12,按照9:1的摩尔比混合,进行复合得到的多铁复合材料为:(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1。利用黏合剂来制备柔性材料。利用稀土La元素进行掺杂,提高了柔性多铁复合材料的磁性,降低了烧结温度。通过测试柔性多铁复合材料的物理性质,发现柔性材料同时具有铁电性和铁磁性。
本发明公开了一种纳米导电纤维/高分子复合材料、其制备方法和应用,纳米导电纤维/高分子复合材料由以下原料按质量百分比混合组成:纳米导电纤维材料0.5~5%,高分子材料95~99.5%。该制备方法是按前述的质量百分比将纳米导电纤维加入到液体状态下的高分子材料基体中,进行机械搅拌10~30分钟,利用涂布设备,将混合物涂布成0.1~1毫米厚的薄膜材料进行固化。应用纳米导电纤维/高分子复合材料制作的应变传感器,包括纳米导电纤维/高分子复合材料薄膜方片,复合材料薄膜方片上有激光烧蚀折线,激光烧蚀折线端为电极,用导电胶连接电极和导线。
本发明涉及纳米复合材料制备领域,特别是涉及一种石墨烯拉花/环氧树脂复合材料的制备方法,解决石墨烯粒子在高分子基体中的分散问题。首先利用石墨烯纳米粒子形成具有一定力学强度和良好导电性能的石墨烯纸薄膜,经表面平行切口、牵拉处理得到拉花式石墨烯三维空间网络,再通过大流动性环氧树脂的浸渍、密实、固化得到石墨烯拉花/环氧树脂导电复合材料。该方法所得复合材料内部石墨烯拉花与环氧树脂均保持高度连续,以较少的石墨烯掺量即可实现优良的导电性能,同时赋予复合材料较好的力学强度和变形性能。此外,该制备方法还具有工艺简单、操控方便、易于实现工艺放大等特点。
本发明公开一种原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料及其成形方法,所述复合材料为微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相跨尺度协同增强的铝基复合材料。基于陶瓷增强铝基复合材料的性能需求,依据铝热反应热力学条件及特点,将铝合金粉末、TiO2粉末及BN纳米管均匀混合后,利用金属激光增材制造技术,成形微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相协同增强铝基复合材料。本发明充分利用纳米陶瓷颗粒的位错钉扎作用,阻碍位错运动,提高材料的强度和韧性;另一方面,原位生成的微米级Al2O3陶瓷相与铝合金基体间大量位错在应力作用易缠结,产生强化效应。本发明提供的工艺方法简单,性能卓著。
本发明涉及一种可界面示踪和破坏监测的碳纤维复合材料及其制备方法,其解决了现有碳纤维复合材料界面层难于表征、机械载荷作用下微损伤不易监测等问题,其包括碳纤维、芳稠环分子和树脂,所述芳稠环分子以π‑π结构堆叠在碳纤维表面。本发明同时提供了其制备方法。本发明可广泛用于碳纤维的制备领域。
本发明属于锂硫电池的技术领域,涉及由活性材料制备功能性夹层的方法,具体地说是一种锂硫电池用复合材料的制备方法及该复合材料作为锂硫电池功能性夹层的应用。是一种利用管式炉加热的工艺来制备磷化铁/碳布复合材料(FeP/CC复合材料)。制备出的FeP/CC复合材料作为锂硫电池用功能性夹层不仅加快了电子和离子的传输速率,促进了锂硫电池在充放电过程中的氧化还原反应,同时很好的吸附了多硫化物,抑制了多硫化物的穿梭效应。
本发明涉及一种新型聚氨酯(PU)复合材料、用于制备该PU复合材料的方法和含有该PU复合材料的覆盖制品;所述PU复合材料包含35至75重量%的增强纤维,基于PU复合材料的总重量计;其中所述增强纤维包含75至100重量%的连续相形式的增强纤维和0至25重量%的不连续相形式的增强纤维,基于增强纤维的总重量计。
一种微纳TiB2颗粒增强高强铝基复合材料的双级固溶热处理工艺,属于铝合金和颗粒增强铝基复合材料领域。按照下述步骤进行:①按合金成分配料熔炼、浇铸。②采用双级固溶热处理工艺,先对1wt%TiB2微纳颗粒增强铝基复合材料进行一级固溶热处理520℃/11h,然后再进行二级固溶热处理535℃/1h,将双级固溶处理合金在10秒内进行60℃水淬。最后将水淬试样在170℃进行12h单级时效热处理,最终得到时效态1wt%TiB2微纳颗粒增强高强铝基复合材料。本发明可以达到合金在不发生过烧现象的前提下固溶更多Cu原子的目的,最终制备出的时效态微纳颗粒增强铝基复合材料具有较高的抗拉强度和延伸率。
本发明公开了一种用于废水中重金属离子处理的复合材料,该复合材料以锦纶纤维和硫改性竹纤维为原料,先混纺成纤维网,然后利用三乙烯二胺对纤维网进行氨基改性,得到改性纤维网,最后将改性纤维网置于细菌纤维素发酵培养基中,接种木醋杆菌,发酵,后处理,得到一种废水处理用复合材料,适用于重金属废水处理,可在较短时间内实现对多种重金属离子的吸附去除。
本公开涉及复合材料部件、形成复合材料部件的方法和系统。所述复合材料部件包括复合材料的多个层片。至少一个层片是混合层片。所述混合片材是由多个不同层片块限定的,并且所述多个不同层片块中的至少一个不同层片块限定与所述多个不同层片块中的至少一个其他不同层片块的对应层片块性质不同的至少一种层片块性质。所述方法包括选择至少一个不同层片块并且定位所述至少一个不同层片块。所述方法还包括选择至少一个其他不同层片块并且定位所述至少一个其他不同层片块。所述系统包括限定复合材料部件和/或执行所述方法的系统。
本发明涉及一种石墨烯负载纳米零价铁复合材料的制备方法及该复合材料吸附污染物后的再生利用方法。首先液相化学氧化剥离法制备GO,然后Fe3+通过化学吸附在GO表面。接着将Fe3+/GO复合物烘干后置于等离子放电室中经过H2和Ar混合等离子体放电后制得石墨烯负载纳米零价铁复合材料。将石墨烯负载纳米零价铁复合材料作用于含Cr(V)的实验室模拟废水和含As(V)的地下水中,经过等离子体再次放电再生后,石墨烯负载纳米零价铁对Cr(V)的去除具有良好的重复利用率。该方法快速、高效、绿色,通过再生处理后,石墨烯负载纳米零价铁复合材料的重复利用率得到了大大的提高,既没有造成材料的浪费也降低了成本。
一种富氮多孔材料/碳纳米结构复合材料及其制备方法和应用。该复合材料由富氮多孔材料与各种碳纳米材料复合形成,其制备方法包括将三聚氰胺与多醛基芳香化合物和碳纳米材料在有机溶剂中接触,并将接触后的产物经过分离、热处理、洗涤、烘干等一系列工艺得到富氮多孔材料/碳纳米结构复合材料。本发明制备的富氮多孔材料/碳纳米结构复合材料具有很高的氮元素含量,丰富的孔结构,以及均匀分布的碳纳米复合组分。这类复合材料可以作为电极材料应用于锂离子电池等二次电池中,表现出很高的容量,优越的循环性能和倍率性能,能够满足锂离子电池实际应用的需要。
聚酯/石墨纳米导电复合材料及其制备方法,涉及一种导电复合材料的制备方法。由聚酯和石墨组成,聚酯和石墨的质量比为100∶2~30。本发明具有较低的渗滤阈值(4~5%),特别是石墨含量6%时,电导可达到10-8S/cm,具有较好的抗静电性。由于导电填料填充量较低,本发明基本保持了聚酯的优异的力学性能和加工性能,有望在防静电材料、电磁屏蔽材料、微波吸收等领域获得广泛的应用。
基于纳米POSS掺杂的木材-有机-无机杂化纳米复合材料的制备方法,它涉及木质复合材料的制备方法。本发明为了解决木材-有机聚合物复合材料热稳定性差、冲击韧性低和木材-无机(纳米)复合材料力学性能差的技术问题。本方法如下:首先,将纳米POSS(含有机胺官能团)溶于单体溶液中,并复配引发剂和交联剂,形成浸渍液,再将木材放入浸渍液并置入反应罐中,密闭后抽真空,解除真空,再空气加压,再将压力降至常压,取出木材,用铝箔纸将浸渍后的木材包裹,加热,拆除铝箔纸,再继续加热,即得。本发明的木材-有机-无机杂化纳米复合材料中的聚合物与木材基质界面相容性良好,具有优良的力学强度、热稳定性、尺寸稳定性和防腐性能。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!