一种用于锂硫电池的电解质溶液,其组成包括溶质1:一种或者二种以上的表面活性剂;所述的表面活性剂浓度为0.01-10摩尔/升;溶质2:一种或者二种以上的锂盐;所述的锂盐浓度为0.1-10摩尔/升;溶剂:直链醚类化合物中的一种或者二种以上。这种电解质溶液具有阻硫迁移性,循环稳定性好、价格低等优点。
本发明公开了一种制备高容量锂离子电池正极极片的方法,首先采用溶剂热合成技术制备具有单分散特征的锂离子电池正极材料LiMPO4,M为Fe、Co或者Mn;然后将获得的单分散正极材料制备成为电池浆料,在磁场强度1~10T定向排布处理3~12h,并在50~65℃的温度下干燥,获得高容量锂离子电池正极极片。将该极片制备成扣式电池进行测试,0.2C下定向排布的LiCoPO4克容量为135.7~142.9mAh/g。0.2C下定向排布的LiFePO4克容量为150.7~152.8mAh/g。0.2C下定向排布的LiMnPO4克容量为135.9~143.8mAh/g。本发明有效提高了LiMPO4的克容量。
本发明提供一种钛酸锂动力电池,包括正极集流体、涂布于正极集流体上的正极活性材料、负极集流体、涂布于负极集流体上的负极活性材料及位于正极集流体及负极片集流体之间的隔膜,正极集流体、隔膜及负极集流体经注电解液后形成所述钛酸锂动力电池;正极活性材料为镍锰酸锂,负极活性材料为钛酸锂;电解液包括有机溶剂、锂盐、负极成膜剂及功能添加剂,功能添加剂包括异硫氰酸丙烯酯及乙基3‑三甲基硅基丙酸酯,所述硫氰酸丙烯酯在电解液中的质量百分含量为0.1~5%,所述乙基3‑三甲基硅基丙酸酯在电解液中的质量百分含量为2~10%。本发明提供的钛酸锂动力电池,循环性能优异,容量保持率高,充放电性能良好且能量密度高。
本发明提供一种电解液及锂离子二次电池。所述电解液包括有机溶剂、溶于有机溶剂中的锂盐以及添加剂。所述添加剂包括式Ⅰ所示的化合物和/或式Ⅱ所示的化合物中的一种或几种。本发明的电解液能改善锂离子二次电池在高温高电压下的存储性能以及循环性能。
本发明公开了一种采用废旧锂离子电池正极材料催化降解有机废水的方法;该方法包括:将废旧锂离子电池拆解,取出正极材料,经过热处理后,收集正极材料粉末,并投放入有机废水溶液当中作为催化剂吸附一段时间。之后投入四价硫(S())盐或单过硫酸盐(PMS)溶液进行反应,经过一定时间的降解反应后,能得到净化后的废水。正极材料粉末和有机废水中总的有机物的投料质量比为1:10~1:100;本发明的特点是在常温常压下进行,反应条件温和、反应速度快、易于操作、催化剂可重复利用。实现了在对废旧锂离子电池资源化回收利用的同时达到了降解有机废水的目的。
一种锂离子电池模块的组装方法,由基座和侧面板形成空腔壳体并侧面板内侧涂覆吸热涂层,在空腔壳体内将数个锂离子电池按照极性进行列和排的均匀码放,通过超声波焊接机分别将连接条与负极列或正极列进行串联联接,之后通过负极汇总条将各所述负极列的连接条进行并联联接并将负极总引线伸出到所述空腔壳体外,通过正极汇总条将各所述正极列的连接条进行并联联接并将正极总引线伸出到所述空腔壳体外,这些码放的锂离子电池共同构成锂离子电池模块,在各相邻锂离子电池的空隙中填充散热胶,最后配装上盖板,通过本发明可以使锂离子电池模块的散热性能佳、安全性能高、维修方便及能量密度高。
本发明属于无机非金属材料领域,涉及一种镍钴锰酸锂的表面改性技术。通过将高温烧结后的镍钴锰酸锂放入到改性溶剂中充分搅拌,接着将固液混合物进行过滤。再将滤饼进行加热处理,获得最终产品。经过本发明改性的镍钴锰酸锂,可以有效降低其pH值和杂质锂含量,改善材料的高温循环和储存性能,使其具有优异的循环性能和高温性能,可以广泛用作镍钴锰酸锂,特别是在动力型锂离子电池中的应用。
本发明涉及一种改性硫/炭掺杂的钴酸锂正极材料及其制备方法。本改性硫/炭掺杂的钴酸锂正极材料按重量份计,由以下组分按照所示比例制备而成,硫/炭复合材料25、活性材料70、功能性材料3、导电材料10、粘结材料10。所述功能性材料为60%的硝酸铁锂溶液。所述正极材料为钴酸锂。所述导电剂为鳞片石墨。本发明克服了锂离子电池因为保护板自放电而造成失效的缺陷,从而改善整个电池组的自放电,实现延长锂电池存放时间的目的,保证用户使用完用电器而不充电的情况下可以储存较长的时间。
本发明公开了一种氧化铝包覆钴酸锂正极材料的制备方法,通过气相沉积法在钴酸锂表面均匀包覆氧化铝薄膜。制备工艺为:将含铝化合物、钴酸锂在转炉中混合均匀后加热使含铝化合物汽化,再通入水蒸气使得含铝化合物水解成氢氧化铝沉积到钴酸锂表面,再加热得到氧化铝包覆钴酸锂正极材料。本发明的优点是:制备工艺简单,适合规模化生产,发明合成的氧化铝包覆改性钴酸锂正极材料氧化铝包覆均匀,循环稳定性优良。
本发明涉及一种含磷的锂离子电池正极材料及其制备方法。含磷的锂离子电池正极材料的组成为LiaMnbNicMdPeZfOg,其中M为Co、Al、Ti、Fe、Cr、Cu、Zr、Mg中至少一种,Z为S、Si中至少一种,且0.95≤a< 1.6,0≤b< 1,0≤c≤0.9,0≤d≤0.5,0.001≤e< 0.05,0≤f< 0.2,1.95≤g< 2.5。制备这种正极材料的方法至少含有以下4个步骤:1)以锂源、磷源、锰源和镍源,以及选自钴源、铝源、钛源、铁源、铬源、铜源、锆源、镁源中至少一种,以及选自硫源和硅源中至少一种作为原料,按摩尔比称取相应原料;2)在原料中加入液体,进行研磨;3)将研磨好的浆料进行干燥;4)将干燥后的物料进行焙烧。这种方法工艺过程简单,成本低,易于工业化生产,并且采用这种方法制备的正极材料具有高的比容量。本发明还涉及到使用此材料作为活性物质的电池。
本发明涉及一种高性能锂离子传导膜的制备方法,其特征在于制备步骤如下:制备纺丝溶液:将商业化的颗粒尺寸为20~200nm的Li10GeP2S12粉末与具有一定粘度的有机高分子按质量比mLi10GeP2S12:m高分子=1 : (1~10)的比例溶于有机溶剂中,充分搅拌后形成固含量为30~95%的悬浊液;经过静电纺丝,所得静纺隔膜通过滚筒式热压机进行热压,热压温度为60~85oC,热压后即得具有高离子传导率的隔膜。其具有高安全性和高锂离子传导率的复合隔膜。使用该隔膜的锂离子电池具有更优秀的电化学性能。
本发明公开了一种低热固相反应制备掺锰磷酸锌锂黄绿色荧光粉的方法,以锌盐粉末、锂盐粉末、锰盐粉末、碳酸钠粉末为原料,加入模板剂,在室温、常压的条件下混合后研磨,接着让反应混合物静置,然后用水洗去反应混合物中可溶性的无机盐副产物,过滤,将滤饼烘干,得到掺锰磷酸锌锂黄绿色荧光粉。本发明与现有技术相比较,具有反应不需要溶剂、反应条件较温和、易控制、工艺简单、原料来源广等优点,得到的产品在520-530nm发较强的荧光,是一种发黄绿光的荧光粉。
本发明属于高能电源材料的技术领域,特别涉及 锂电池级氧化钴粉及其制备方法。将氯化钴溶液或硝酸钴溶液 与碳酸氢铵溶液反应得到碳酸钴;碳酸钴经400~600℃煅烧 后,再在800~1000℃两段式烧结,或者在500~1000℃一段 式烧结生成四氧化三钴;再进行粉碎分级,最后得到锂电池级 氧化钴。产品中粒径3~6微米、粒度分布 D102~4μm、 D90<10μm;松装密度0.7~ 1.3g/cm3;钴含量72.5~74wt%, 主晶物相为α- Co3O4,亚钴含量<5%,振实密度2.5~ 3.5g/cm3;铁含量<0.01%。本发 明的产品粒度分布可控,密度可控,颗粒抗混磨强度高,更适 合用于合成锂离子电池正极材料。
本发明公开了一种掺杂磷酸亚铁锂正极材料及 其制备工艺,涉及一种电池正极材料及其制备方法,本发明的 目的是用此工艺制备的锂离子电池正极材料既具有锂离子电 池一般优点外,还具有放电容量高达150mAh/g,500周循环容 量保持90%以上,而成本低。本发明的技术方案要点是,一种 掺杂磷酸亚铁锂正极材料,其分子式为: LiFe0.99M0.01PO4/C,式中M为 Cr、Zn、Ca。其制备工艺有下列工序;(1)将碳酸锂、亚铁盐、 铬盐、锌盐、钙盐、磷源和葡萄糖进行混合和球磨;(2)将工序 (1)得到的粉末物料在惰性气氛下进行低温预热处理;(3)将上述 工序(2)制得的物料再进行球磨后,在惰性气氛保护下进行灼烧 处理,冷却球磨过300目筛。本发明用于制作锂电池的正极。
本发明公开了一种废旧锂离子电池阳极材料石墨的回收及修复方法,属于资源循环利用和无机材料的修复技术领域。该方法包括以下步骤:1)将石墨与铜箔分离,得到阳极材料石墨粗产品;2)除去阳极材料石墨粗产品中的锂、铜等金属杂质;3)除去乙炔黑和残留有机物,并使石墨表面氧化,4)包覆,进行表面修饰。本发明所得石墨振实密度达1.07g/cm3,首次放电容量为335.7mAb/g,首次充放电效率为90.5%,54次循环后容量保持率为97.23%,与市场上锂离子电池用石墨性能相当。本发明具有石墨回收率高、原料纯度高、工艺简单、能耗少等优点,既有经济效益,又有节约有限的石墨资源、减少环境污染等社会效益。
本发明涉及具有耦接到芯组两侧的外罩并且每一外罩具有形成于其内表面上的肋的锂可充电电池,其可以防止在芯组上部进行树脂模塑时树脂流入外罩,由此降低由于树脂流动在外罩中产生的缺陷。本发明的锂可充电电池包括:芯组,其包括裸电池和布置在裸电池的上部以通过引线板电连接到裸电池保护电路模块;外罩,其覆盖芯组的两个短侧面,其中引线板设置在芯组的两个短侧面上;以及树脂模塑部分,其形成于芯组的上部,其中芯组的上部包括各个外罩的一部分以及保护电路模块。在该锂可充电电池中,肋形成于外罩的内表面上,以将由于引线板而形成于外罩和芯组的两个短侧面之间的缝隙与树脂模塑部分隔离开来。
本发明公开了一种三维多孔钒酸锂正极材料及其制备方法。该三维多孔钒酸锂材料由质量比为(2.12~2.80)∶1的LiV3O8和Li0.3V2O5两相组成,其一次颗粒为片状,长度为100~1000nm,宽度为50~600nm,厚度为10~80nm,二次颗粒为立方体状,边长尺寸为20~40μm。孔径分布范围为20nm~100nm。该方法包括:将LiOH·H2O、NH4VO3和甘氨酸加入去离子水中,混合搅拌后经干燥得到黑色前驱体粉末,再在空气气氛中烧结得到产物。本发明方法工艺简单,操作安全,便于工业化生产;本发明用于锂离子电池正极组装的电池,其充放电容量高,循环稳定性好。
本发明公开了测定锂系聚合反应破杂终点的方法和仪器,本方法包括1)向锂系聚合原料体系中滴加有机锂引发剂,2)测定原料体系对样品光和参比光的吸光值之差,3)与测定的破杂终点的吸光值范围比较,判断破杂的终点。本仪器包括主机和探测器,探测器包括光的入射端和接收端,入射端包括光纤和透光材料,接收端包括光电换能器和前置放大器,探测器内光的入射端与接收端是通过聚合原料体系正对放置的,该原料体系可直接进入工业生产设备内,以实现在线测量。
本发明为制造下述通式(1)所示的含锂复合氧化物的方法,至少包括:使作为原料物质的锂源、元素M源、磷源以及元素X源溶解到溶剂中来制备溶液的工序,其中,在至少使元素M源溶解后添加磷源;使所得到的溶液凝胶化的工序;和对所得到的凝胶进行煅烧的工序。根据本发明,能够提供安全性和成本方面优良、并且能够使电池长寿命化的锂二次电池用的正极活性物质。LixMyP1-zXzO4(1),式(1)中,M为选自由Fe、Ni、Mn、Zr、Sn、Al以及Y组成的组中的至少一种元素,X为选自由Si以及Al组成的组中的至少一种,并且满足0<x≤2、0.8≤y≤1.2、0≤z≤1的范围。
本发明属于锂离子二次电池技术领域,尤其涉及一种锂离子二次电池阴极材料,所述阴极材料包括基体、包覆在所述基体外表面的A层,以及包覆在所述A层外表面且位于最外层的B层;所述基体为结构通式为LixMOy的含锂金属氧化物,所述A层为基体材料经过渡金属元素掺杂的含锂金属氧化物,其结构通式为LixM1-aNaOy,所述B层为金属氧化物、金属磷酸盐和金属氟化物中的至少一种,所述A层与基体形成共晶格结构。相对于现有技术,本发明能够提高锂离子二次电池的循环性能、存储性能和安全性能,达到在不改变阳极的情况下,直接提高阴极的充电截止电位和能量密度的目的。此外,本发明还公开了一种包含该阴极材料的锂离子二次电池。
本发明涉及一种锂电池储能电源装置,包括有装置外壳,特点是:装置外壳内设置有锂电池组件,在锂电池组件的输入端连接有电量显示器的输出端。同时,电量显示器的输入端连接充电器组件的输出端与逆变器的输出端,充电器组件与锂电池组件输入端之间的回路上设置有充电开关。逆变器组件与锂电池组件输出端之间的回路上设置有放电开关。这样,依托于锂电池保护组件的存在,可以防止电压和电流的过充过放,保证使用安全性。同时,由于电量显示器的存在,使用者能够及时知晓电量的多少,便于使用。并且,采用模块化的设计,整体重量轻体积小,适用于中小企业储能备用电源系统和家用备用电源系统。
本发明涉及一种铕钐掺杂磷酸锂镁光激励发光材料及其制备方法,该材料的化学式为LiMgPO4 : Eu, Sm, B,具体制备方法为将原料氢氧化锂、硝酸镁、磷酸二氢铵、硼酸、氧化铕和氧化钐混合研磨,装入氧化铝材质的瓷坩埚,放入高温烧结炉中分段恒温烧结,再将氧化铝坩埚冷却至室温,即可得到铕钐掺杂磷酸锂镁LiMgPO4 : Eu, Sm, B光激励发光材料。该材料为橄榄石型结构,空间群为Pnma, 晶格常数为a=10.147?, b=5.909?, c=4.692?,铕钐掺杂并没有改变LiMgPO4材料的基本结构;该材料的热释光性能有了很大提升,灵敏度和辐射剂量信息存储的稳定性得到了有效的改进,氧化钐的加入提升了稀土铕离子的发光性能,该材料对环境污染小,成本低,可应用于环境、医学以及人体辐射剂量的非在线和实时在线测量。
本发明涉及一种钒酸银-磷酸铁锂复合正极材料的制备方法,包括如下步骤:(1)制备钒酸银;(2)将乙酸锂、磷酸铵混合,用水溶解,依次加入柠檬酸和丙酮,搅拌,制成溶胶,在所述溶胶中,加入葡萄糖,加入摩尔量与锂摩尔量相等的氢氧化铁和还原剂炭黑,混合均匀,真空干燥,球磨,制成碳包覆的磷酸铁锂前驱物;(3)将上述钒酸银和上述磷酸铁锂前驱物机械充分混合后,置于真空反应炉中,烧结,冷却后,球磨得到产品。本发明制备的锂离子电池用石墨烯-氟化铁复合正极材料,将放电容量高的氟化铁材料进行钴掺杂改性以提高其导电性能,然后再和导电性能和稳定性能均很好的硅掺杂石墨烯材料复合,使得其兼具高容量以及高循环稳定性的特点。
本发明涉及锂电池极片基材和极片、以及其制备方法。该锂电电池极片包括锂电池极片基材、以及涂覆在锂电池极片基材两侧表面的极片浆料。该锂电池极片基材包括基材主体,在基材主体上设有通过机加工成型、贯通基材主体两侧表面的若干通孔,涂覆在锂电池极片基材两侧表面的极片浆料通过通孔接触导通,提高了极片基材的透过性,增强了极片浆料的挥发性,从而可以帮助容量发挥提高了20%-40%。由于通孔的设置,使得单位体积内容纳的极片浆料的数量增加,也就是说在不改变极片基材长度的情况下可以容纳更多的极片浆料,或者,容纳相同量的极片浆料所需要的极片基材可以缩短,从而可以减少隔膜、极片基材的用量,大大减少了浪费,而且大大降低了生产成本。
本发明涉及一种锂钒氧化物超长纳米线及其制备方法,其可作为高功率长寿命锂离子电池正极活性材料,其长度达200~300微米,直径为100~200纳米,本发明通过简单煅烧,获得锂钒氧化物超长纳米线。作为锂离子电池正极活性材料时,在2000mA/g的电流密度下,循环600次后放电容量仍可达120mAh/g,每次容量衰减率仅为0.022%。该结果表明锂钒氧化物超长纳米线具有优异的高倍率特性,是高功率、长寿命锂离子电池的潜在应用材料。制备前驱体H2V3O8超长纳米线所采用的简单水热法,可通过改变反应物浓度、反应温度和时间即可控制材料的形貌和尺寸大小,且制得的材料纯度高、分散性好。
本发明涉及一种铌酸锂晶体、固体电解质及它们的制备方法和应用,所述固体电解质由掺钨或钼的铌酸锂晶体组成,所述掺钨或钼的铌酸锂晶体为在铌酸锂晶体中掺入有钨离子W6+或钼离子Mo6+,化学式组成为Li3-xNb1-xMxO4,其中x=0.01~0.4,M为钨或钼。所述制备方法包括采用高温固相法制备掺钨或钼的铌酸锂晶体的步骤和干压烧结步骤,生产效率高,产物产量高且纯度高;不使用任何液体有机溶剂,从源头上解决了锂离子电池的安全性问题;所制得的固体电解质,离子电导率高、电化学稳定性好,具有非常广大的应用前景。
本发明属于电池材料技术领域,具体涉及一种高振实密度磷酸亚铁锂的制备方法。本发明主要解决现有技术生产的磷酸亚铁锂存在电导率低和堆积密度小的缺点。本发明的制备方法包括以下步骤:1)将三价铁源、磷源、锂源、掺杂元素化合物、碳源和分散剂按照一定的摩尔比混合均匀,放入球磨容器中球磨并将球磨产物在空气中烘10~15h,冷却后研磨,制得磷酸亚铁锂前躯体;2)将磷酸亚铁锂前躯体置于高温炉中,在混合气氛中,以10~30℃/min的速度加热到500~900℃时恒温焙烧8~15h,然后以10~30℃/min的速度降温冷却到10~40℃,制得磷酸亚铁锂。本发明具有纯度高、电化学性能优良、循环稳定性能好等优点。
本发明涉及一种通过低温烧结制备掺杂锂钒氧化物纯相的方法。氢氧化锂∶偏钒酸胺∶掺氟剂为0.95~1.30∶3∶0.01~0.25的摩尔比分别称取氢氧化锂、偏钒酸胺和掺氟剂,研磨混合,在50~300公斤/厘米2的压力下压制成圆片,再采用两段或一段烧结法进行烧结,自然冷却至室温,研磨,获得大小为100~200目的掺氟锂钒氧化物纯相电极材料。其中掺氟剂是氟化锂、氟化钠、氟化钾、氟化钙中一种或两种以上物质的混合物。两段烧结法是先于80~200℃烧结1~10小时,然后升温至280~580℃高温烧结8~48小时。一段烧结法是在200~460℃直接烧结。在烧结过程中均连续通入空气或氧气流。该方法能够实现大规模工业化生产,制备出高容量的锂离子电池材料,具有广泛的应用前景。
本发明涉及电池材料制备技术领域,为一种金属钛掺杂覆碳磷酸铁锂及其制备方法。该物质的化学表达式为:LiFe1-xTixPO4/C,其中0
本发明提供了一种用于锂离子二次电池的电解液,该电解液含有电解质、溶剂和添加剂,其中,所述添加剂为氧化还原电对添加剂,所述溶剂为离子液体。本发明还提供了一种锂离子二次电池。由本发明的电解液所制得的锂离子二次电池的高温性能、过充性能、高温储存性能、低温放电性能、倍率放电性能以及组合电池的循环性能很好。特别是电池安全性能有显著提高。另外,组合电池在充放电过程中各单电池的一致性及各单电池和电池组的安全性能也得到显著改善。
中冶有色为您提供最新的有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!