本发明公开了一种制取杜仲叶中绿原酸的方法,将杜仲叶粉碎、纤维素酶辅助中温水提取、常规过滤、超滤膜除杂、纳滤浓缩、大孔树脂的分离纯化、浓缩及干燥制得绿原酸粉;该方法采用纤维素酶辅助中温水提取杜仲叶中的绿原酸,提取率可达到95%,水提温度较低、提取时间缩短;采用超滤膜对提取液进行除杂、分离其他副产物,膜操作过程简单,膜通量能长时间稳定,易于清洗、使用寿命长和实现工业化;采用纳滤膜对除杂后的提取液进行浓缩,减轻了后续工艺的负荷,可延长树脂的使用寿命;纳滤滤液其COD值≤100,可以回用生产工序,基本无废水排放;采用大孔吸附树脂能有效纯化绿原酸,制得的粉末中绿原酸纯度大于60%,提取率大于1.4%。
本发明提供了一种新型石墨烯量子点稳定的贵金属纳米颗粒催化剂的制备方法,以贵金属为原料,石墨烯量子点为稳定剂,在去离子水中充分搅拌混合二者,随后加入还原剂充分反应后,即可得到一种石墨烯量子点稳定的贵金属纳米颗粒催化剂。此方法制备的贵金属纳米颗粒能够在水溶液中稳定存在,具有优良的水分散性,颗粒大小均匀。制备的贵金属纳米颗粒具有优异的催化活性,在应对能源危机与解决环境污染上,可以用作氨硼烷、硼氢化钠和四羟基二硼等氢源的水解产氢催化剂,其中金纳米颗粒还可用作降解工业废水中的污染物对硝基苯酚。
本发明公开了一种餐厨垃圾综合处理系统及其处理方法,属于环境治理技术领域。本发明从餐厨垃圾中回收固形物制备复合蛋白饲料,同步回收油制备成肥皂粉、生物柴油、燃料油等工业用品,回收餐厨垃圾废水制成肥料,实现了餐厨垃圾综合利用的目标。本发明的系统设计合理,各子系统相互独立又相互连通,形成了一个快速处理餐厨垃圾的生产线,利用本生产线的餐厨垃圾的处理方法简便易行,具有极高的处理能力,变废为宝,而且极大地缓解了城市环境污染问题。本发明的生产线每天能处理餐厨垃圾10~500t,约占武汉市这样的大城市垃圾量的40%,每100T餐厨垃圾可生产8~12t的粗制蛋白饲料,2~4t的精制毛油,50~70t的液体肥料。
本发明属于荧光传感技术领域,具体涉及一种亚硝酸根的荧光测定方法。使用谷胱甘肽与聚乙烯亚胺反应制备了聚合物点荧光探针,其荧光强度随着亚硝酸根浓度的改变在发射波长462nm呈线性猝灭关系,由此建立标准工作直线,可以测定自来水、工业废水中的亚硝酸根的浓度。本发明操作方便,特异选择性好、灵敏度高,响应时间快,准确性好,可以测定复杂水体工业废水中的亚硝酸根的浓度。
本发明涉及一种纤维素珠粒的制备方法,包括有以下步骤:1)将碱/尿素水溶液或碱/硫脲水溶液预冷至-12~-5℃,然后加入纤维素,搅拌溶解,脱泡、除杂制得纤维素溶液;2)将步骤1)制得的纤维素溶液吸入到注射器中,采用注射挤压滴落法在固化液中进行固化,最后用蒸馏水反复洗涤得到纤维素珠粒。本发明的优点如下:本方法操作便利,成本低廉,重复性好,无毒无污染,适用于大尺寸纤维素珠粒的大规模制备;本方法制备的珠粒形状圆润,分散均匀,无毒无污染,且具有较好的稳定性,易于功能化拓展及应用领域,可广泛地应用于食品、药品以及工业废水中染料、重金属和磷酸根等物质的吸附。
一种气相催化合成邻甲酚的新型催化剂,催化剂各活性组分以原子数计为:Fe1.0CoaCrbVcMgdKeOf本发明优点是:新型催化剂具有低温活性高、寿命长、邻甲酚收率高优点,工艺中几乎没有废水、废气、废固排放,符合“绿色化工”要求,适合工业化生产。
本发明涉及吸附材料、复合材料的制备方法。一种凹凸棒/氧化锆复合除氟材料的制备方法,其特征在于它包括如下步骤:1)原料的选取:按质量比为3∶6~5∶6的比例,分别称取锆盐和钠化后的凹凸棒石备用;将锆盐配制成锆盐溶液;2)将凹凸棒石配制成5wt%的悬浊液,搅拌,得到凹凸棒石悬浊液;3)将上述锆盐溶液逐滴加入到凹凸棒石悬浊液中后,搅拌,然后用NaOH溶液调节其pH至5.0~5.5;老化,得到浆料;4)将上述浆料离心,所得滤饼干燥;将所得干燥物于铝盐溶液中浸泡活化4h以上,用去离子水洗涤至无SO42-后,干燥,磨细,得到凹凸棒/氧化锆复合除氟材料。该方法制备出的复合除氟材料具有较大的吸附量、廉价、可回收利用。可用于地下水除氟,也可用于工业废水除氟。
本发明提供一种高效电沉积重金属清理系统,包括过滤膜、高效重金属电沉积膜、输送泵、反应池、控制系统、反馈调节系统、支撑结构。所述输送泵将尾水送入反应池,尾水中的重金属离子在通过高效重金属电沉积膜时发生还原反应,均匀地沉积在金属电极滤膜上,处理后的水经输送泵送回生产车间,反馈调节系统根据尾水中重金属离子浓度调节电镀车间重金属投料量,控制系统监控以上各部有效运行。该技术是一种清洁技术,利用电子作为清洁剂;适用现有已知工业废水98%以上的重金属,重金属清除率99.9%以上,有效解决现有重金属处理技术在超低浓度处理效果差的难题。该清理系统专门针对工业废水成分特点设计,结构简单、能效高、无二次污染等特点。
本发明公开了一种铜掺杂Fe3O4磁性复合纳米材料及其制备方法和应用,属于磁性纳米粒子及水处理研究领域。本发明以铁源、铜源和碱源为原料,采用离子热法,在离子型低共熔溶剂中,进行反应制得所述的铜掺杂Fe3O4磁性复合纳米材料(Cu-Fe3O4)。制备的Cu-Fe3O4可用作多相类芬顿催化剂,对废水中的有机物(如染料等)表现出优异的降解能力,且易于磁性分离回收、重复使用性能稳定(如重复使用8次后对常用工业染料罗丹明B溶液的室温降解脱色率仍达85%,k1=0.0132min-1),为一种成本低、操作快速方便、效果明显、应用前景广阔的新型磁性环保材料。
本发明公开了一种漆雾凝聚剂及其应用,属于工业含漆废水处理技术领域。该漆雾凝聚剂包括配合使用的A剂、B剂和C剂,A剂为三聚氰胺与醛类反应生成的线性高分子聚合物,B剂为分子量为800-1000万的阴离子聚丙烯酰胺经复合钠盐改性而得的水溶液,C剂为碱性无机化合物的水溶液,所述复合钠盐为氢氧化钠、硫酸钠及碳酸氢铵的混合物。本漆雾凝聚剂对含漆废水处理效率高达95%以上,其处理废水的价格为1.5元左右/吨废水,较目前市售的漆雾凝聚剂处理废水的价格的2-3元/吨废水,便宜不少,价格优势明显。
本发明公开了一种高炉除尘灰的资源化利用方法,包括以下步骤:1)对高炉除尘灰进行筛分,筛分出粒径为200~400目的高炉除尘灰;2)将筛分后的高炉除尘灰用水浸泡除盐,除去洗脱液,取不溶物质待用;3)将所述不溶物质按液固体积比为3~5∶1的比例放入体积百分比浓度为10~30%的H2SO4溶液中,在温度为30~50℃下搅拌,得混合液;4)在步骤3)所得混合液中加入双氧水溶液并快速搅拌,当溶液中Fe3+浓度/Fe2+浓度>4时,调节溶液PH值为4~6,即制得水处理剂;5)将所述水处理剂用作工业废水净化处理中的絮凝剂。本发明不但解决了高炉除尘灰的环境污染与占地面积大的问题,也有效降低了工业废水中污染物的浓度,充分利用了二次资源。
本发明涉及一株耐酚异养硝化—好氧反硝化菌及其应用。本发明所提供的耐酚异养硝化—好氧反硝化菌Y3属于不动杆菌(Acinetobacter?sp.),编号为Y3;保藏于中国典型培养物保藏中心,保藏日期为2013年9月25日,保藏编号为CCTCC?NO:M2013445。该菌株Y3为革兰氏阴性菌,菌落乳白色,边缘整齐,呈圆形,中心凸起。菌株Y3能够以废水中的苯酚为碳源,将氨氮经异养硝化、好氧反硝化反应转化为氮气,且无中间产物亚硝酸盐氮的积累。该菌能耐受酚浓度高达1000mg/L的工业废水环境,并以苯酚作为碳源进行同时硝化和反硝化,实现废水中的氨氮和苯酚同时高效降解。在焦化废水、炼油废水和焦油加工废水生物强化处理中展现出良好的应用前景。
本发明公开了一种微波破壁及醇提与油提技术联用生产薯蓣皂素的工艺方法,由如下步骤实现:1.原料粉碎;2.微波破壁;3.皂甙醇提;4.淀粉酶解;5.硫酸水解;6.皂素油提;本方法能大幅度减少废水排放量,同时还显著提高皂素提取率与降低生产成本,是一种能适应于工业化大生产的皂素清洁生产工艺。
本发明公开了一株高浓度苯酚、苯胺降解菌及其应用。其分类命名为红球菌PB‑1(Rhodococcussp.PB‑1),保藏号为:CCTCC NO.M2019472。该菌株在48 h之内可完全降解1500 mg/L苯酚和800 mg/L苯胺,且2000 mg/L苯酚和1500 mg/L苯胺在72 h降解率分别为35%和68%。菌株降解苯酚的最佳温度为30~35℃,并且在碱性条件下降解效果较好,最适pH值为9.0。该菌株对苯酚和苯胺的降解均通过邻苯二酚1,2‑双加氧酶催化的邻位途径,该酶是一种诱导酶。本发明的菌株代谢产物无毒性,环境友好,在治理相关有机物污染的工业废水中具有非常高的应用价值。
本发明公开了一种人造生物膜及制备方法。采用国家批准使用的有益微生物菌株发酵后浓缩。以聚乙烯醇、海藻酸钠、羧甲基纤维素钠等成膜原材料溶于水中制成胶液后,再将煤基活性炭粉末、硅藻土粉末、醋酸钠与单株或多株微生物细胞混合后加入胶液中,然后放在喷雾装置中加压喷雾滴入粉末床上固定,形成人造生物膜。人造生物膜可机械化、规模化生产,固定过程简单、效率高、成本低。膜中细胞密度高、传质性好、稳定、有效期长、可重复使用。人造生物膜可应用于工业废水、生活污水、渔业水体、景观水体、流动水体和底泥等不同污染水环境的生态修复和治理。
本发明公开了一种抗生素污染去除的方法,属于抗生素技术领域,其包括以下步骤,抗生素废水预处理,先将生产区内的抗生素废水经格栅拦截较大悬浮物后进入调节池,废水在调节池中暂存与均质后进入初沉池进行自然沉淀,初沉池上清液进入水解酸化池,调节废水PH值为5‑7,溶解氧为0.2‑1.2mg/L。该抗生素污染去除的方法,通过采用煤矿业固体废弃物制作吸附剂,使得吸附剂可以吸附废水中大部分的污染物,再配合功能性微生物降解,与强光照射配合可以降解废水中余下的抗生素,从而达到去除抗生素的目的,且本方法属于资源再利用,所以对环境无毒害,原材料的来源广泛,成本低廉,制备简便,效果显著,具有良好的工业前景。
一种用于除去污水中重金属离子的有机无机杂化材料。该材料由载体纳米二氧化硅和对重金属离子有选择性识别与吸附的化学传感器组成,其化学传感器与纳米二氧化硅质量百分比为10%~50%∶50%~90%,这种杂化材料粒子的尺寸为30~300nm,比表面积为100~900m2/g。制备方法是:首先以稻壳燃烧所产生的稻壳灰为原料制备多孔二氧化硅,然后将能识别重金属离子的化学传感器键连到多孔二氧化硅的表面得到有机无机杂化材料。由于在多孔SiO2表面键连对重金属离子具有优异的吸附性能的化学传感器,因而这种材料适宜作为工业废水中重金属离子除去剂。该有机无机杂化材料制备方法简单,对重金属离子选择性识别、吸附能力强,具有处理速度快、可再生等优点。
本发明涉及一种聚丙烯酰胺水分散乳状液及其制备和应用。该水分散乳状液的制备,以多种无机盐水溶液作为介质、聚电解质作为稳定剂、带有双键的非离子单体发生自由基聚合或者与阳离子共聚合形成聚丙烯酰胺水分散液。本产品外观为乳白色,粒径约10-100ΜM,该乳液产品溶解速度快、生产过程不使用任何有机溶剂、无毒、对环境友好。与传统的聚丙烯酰胺干粉和微乳液产品相比,本乳状液产品的使用更为安全方便,可以与破乳剂联合应用于油田采出液处理,促进油水分离,增加原油脱水量,且脱出水水质好;作为工业含油废水的油水分离剂及水质净化剂;作为有机絮凝剂用于油田污水处理、城市污水处理;在造纸领域用作助滤、助留及纸张增强剂等。
本发明提供一种兼顾区域公平和污染源治理差异的水污染负荷分配方法,包括选取评价指标,计算各指标基尼系数及其权重;计算现状综合基尼系数;设置总量控制约束;设置公平性约束;设置削减率约束;确定各行政区涉及工业废水的吨水治理费用;确定各行政区城镇生活污水吨水治理费用;确定市政提标改造的吨水治理费用;确定各行政区工业废水、城镇生活污水、市政提标改造的单位污染负荷治理费用;计算综合治理费用;水污染负荷分配问题进行求解。本发明能够科学合理地指导各区域和各类污染源中污染物削减顺序及削减量方案制定。
本发明属于工业污水处理技术领域,具体公开了一种基于MAP法的磷石膏堆场渗沥液无害化资源化处理方法,其步骤为:1.用生石灰调节磷石膏渗沥液至酸性(pH=2.8‑3.5),去除废水中的氟离子和硫酸根;2.用CaO调节步骤1中渗沥液废水pH值至6.1‑7.0,以降低溶液中总磷和氟离子浓度;3.继续调整步骤2中渗沥液废水pH值至8.0‑8.5时,以降低溶液中总磷、氨氮和镁离子浓度;4.外源投加生石灰,调节步骤3中渗沥液废水pH值至11.8‑12.5,以降低溶液中氟离子和总磷浓度;5.用浓硫酸将步骤4中渗沥液废水pH值降至6.0‑9.0,所得废水达到《污水综合排放标准》GB8978‑1996一级排放标准。本发明方法处理成本低、操作条件简单,处理后的废水能够达到相应的国家排放标准。
本发明公开了一种魔芋葡甘聚糖吸附材料的制备方法,该方法是通过高浓度溶胀的方法获得保留乙酰功能基团的耐水溶性魔芋葡甘聚糖。步骤如下:首先纯化魔芋精粉得高纯度魔芋葡甘聚糖,然后将高纯度魔芋葡甘聚糖在水中溶胀10min,再加入少量二甲基亚砜,在40~70℃条件下充分溶胀,取出后挤压形成直径为0.5~1.0mm的丝状体,加入到70~95v/v%的二甲基亚砜溶液中,置于沸水浴,30min后取出,剪切为径高比为0.5~1.0mm:0.5~1.0mm的颗粒,干燥至恒重即得。本发明方法与化学改性方法相比具有制备过程简单和低能耗的优点,所得产物具有良好的耐水溶性;它可以作为一种吸附材料,在染整废水处理方面有着良好应用前景。
本发明涉及一种用于高温高矿化度油藏的微生物驱油剂及制备方法,属油田三次采油技术领域。它是将含盐工业废水、含磷工业废水、无机铵盐、芽胞杆菌菌种、蛋白和水加入到发酵罐后调解溶液的pH值值后,升温至40~55℃搅拌均匀,再加热至125℃灭菌25分钟;待冷却降温至40~60℃后加入芽胞杆菌菌种,保持温度在55~60℃中发酵48小时后冷却至常温,即得到微生物驱油剂。本发明所培育的微生物菌种可耐受121℃的地层高温,可在矿化度达22%的井液中生长;具有制备方法简单、针对性和可操作性强、生产成本低、安全环保、经济效益高的优点;并能利用本地企业的含盐、含磷废水作为生产原料;避免了传统化学驱油剂用量大、成本高、污染环境及破坏油品的问题。
本发明公开一种马来酸酐修饰的豌豆壳基生物吸附剂的制备方法及其应用。其制备为:(1)将马来酸酐固体加热熔融后,加入预处理后的豌豆壳混合,恒温反应,趁热抽滤,清洗后干燥至恒重;(2)将步骤(1)得到的干燥产物浸没在饱和氢氧化钠溶液中,搅拌后清洗,然后干燥至恒重即得到马来酸酐修饰的豌豆壳基生物吸附剂。制备得到的马来酸酐修饰的豌豆壳基生物吸附剂可应用于工业染料废水和含金属离子的废水处理,对废水中的工业染料和金属离子的去除率高,吸附容量高,具有广阔的应用前景。
本发明属于污染治理技术领域,具体涉及一种耐盐的可修复污染水体的短小芽孢杆菌SZG‑NY‑002及复合菌剂及应用,所述的短小芽孢杆菌SZG‑NY‑002的保藏编号为CCTCC NO:M2020549,该菌株可处理高盐工业废水,将其与短小芽孢杆菌SZG‑NY‑001复配后,获得的复合菌剂,对于高盐工业废水处理的降解率更高,大大提高了高盐废水中COD的降解效果。
本发明涉及基因工程领域,具体地,本发明涉及一种碱性果胶酶PLA及其基因和应用。根据本发明的碱性果胶酶PLA,其氨基酸序列如SEQ?ID?NO.1或2所示。本发明的碱性果胶酶的最适pH为9.0,在pH7.5-10.0之间有80%以上的酶活。具有良好的pH稳定性,在pH5.0-10.5之间稳定;比活797U/mg;极好的碱性蛋白酶抗性以及易于工业化发酵生产。做为一种新型的酶制剂,在纺织、造纸、洗涤剂、植物纤维加工、茶和咖啡发酵、油提取、含果胶工业废水处理及生物技术等行业都有应用价值。
本发明涉及一种负载型固体催化剂及其制备方法及其应用。所述催化剂化学式为MxOy-SO42-/TiO2-Al2O3-SiO2,其中,M为金属离子,x和y为化合价态平衡数,载体为TiO2-Al2O3-SiO2。所述催化剂的采用分步浸渍法制备,依次将金属离子M的硝酸盐或盐酸盐和硫酸铵或过硫酸铵负载到载体TiO2-Al2O3-SiO2上得到制得。本发明催化剂特别适用作为合成洛索洛芬中间体2-(4′-溴甲基苯基)丙酸酯的工艺中催化剂,具有选择性高、转化率高、反应条件温和,而且催化剂的分离简单、工业废水少,有利于工业化生产的优点。
本发明提供了一种水溶性高分子量阳离子聚合物的制备方法。该方法采用多元复合氧化还原引发体系,添加多种助剂,引发甲基丙烯酰氧乙基三甲基氯化铵或丙烯酰胺丙烯酰氧乙基三甲基氯化铵和丙烯酰胺水溶液共聚,制备了特性粘数13.4~23.4dl/g水溶性阳离子聚合物粉剂产品,聚合物中METMAC或AETMAC摩尔百分含量0.5%~99.5%,且残余单体含量≤0.1wt%。本发明的特点是直接采用国产工业级单体为原料,不需精制,获得的高分子量聚合物阳离子度达50~99.5%。该产品可用作石油工程中的黏土稳定剂、反相破乳剂、缓蚀剂,造纸工业中的增强剂、造纸废水处理剂,环境保护中的水处理剂、淤泥脱水剂等。
本发明属于水处理技术领域,具体涉及一种脱氮除磷载体的制备及用途。本发明的载体能够对含氨态氮、无机磷的工业废水、生活污水以及面源污染中污染源(水)等进行脱氮除磷处理的水环境保护。本发明的脱氮除磷载体特征在于,以制成品干基为200KG并按重量计的组分如下:斜发沸石粉(90%过100目交换容量在100CMOL(+)/KG以上)100~120KG;石膏粉(90%过100目)50~70KG;粒径为2-3CM的工业用食盐10KG;普通硅酸盐水泥(标号325-525)20KG;松树锯末为2KG;补充清水100-200KG。本发明还公开该载体的制备方法及其应用。
一种水泥熟料冷却机多相介质冷却方法。该方法是在现有的用气相介质冷却熟料的同时喷入液相介质,利用液体较高的吸热能力而使熟料快速高效冷却,大幅度降低出冷却机熟料温度,提高冷却机效率,降低熟料热耗,提高熟料质量,改善熟料易磨性,具有多重技术经济效益。液相介质汽化后可与高温煤粒反应形成水煤气CO+H2,有助烧作用,因此汽化的液相介质不影响熟料煅烧。本发明所用的液相介质是工业用水、饮用水、工业废水、含有机物的废液、城市污水等单相液体或多相混合液体。污水或废液经过高温汽化、燃烧、消毒或被水泥固化。因此本发明不会造成二次污染,可以作为污水、废弃液体的无害化处理方法。
本发明公开了一种适用于工业冷却循环冷却水的抗坏血酸无磷缓蚀阻垢剂。该缓蚀阻垢剂由马来酸化合物、丙烯酸三元共聚物、抗坏血酸、氨基磺酸化合物、锌盐、葡萄糖酸盐和蒸馏水复合而成。本发明的抗坏血酸无磷缓蚀阻垢剂对碳钢型设备有较好的缓蚀和阻垢效果,在碱度低于400mg.L-1、硬度低于500mg.L-1、pH<8.2、电导控制在0μs.cm-1~2400μs.cm-1工业冷却循环水中,本无磷缓蚀阻垢剂投加量为20mg.L-1~50mg.L-1,经大量实验测的对A3碳钢年腐蚀率低于0.04mm.a-1,阻碳酸钙率达98%以上。使用本产品所排放的废水不会对水体造成磷带来的富营养化污染,环境友好,处理每吨水药剂成本不足0.12元,产品制造工艺简便。
中冶有色为您提供最新的湖北有色金属废水处理技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!