本发明公开了一种由混纺无纺布制备锂离子电池隔膜的工艺,涉及电池隔膜加工技术领域,包括以下步骤:(1)混纺无纺布的加工,(2)粘合剂的配制,(3)粘合层的形成,(4)隔膜的制备。本发明以聚对苯二甲酸乙二醇酯和丙烯腈‑丁二烯‑苯乙烯共聚物作为原料制备混纺无纺布,以使利用所制混纺无纺布加工制得的锂离子电池隔膜隔膜具有优异的力学性能,同时提高隔膜的耐高温性能。
本发明公开一种制备锂电负极用壳‑核结构纳米纤维的方法,包括有以下步骤:(1)将硅纳米粒子与PMMA溶解在DMF与丙酮的混合溶中形成了最终得到的复合纤维的核结构的前驱体溶液;(2)将PAN溶解于DMF中,形成了最终得到的复合纤维中的壳结构的前驱体溶液;(3)采用上述核结构的前驱体溶液和壳结构的前驱体溶液按照静电纺丝参数制备得到复合纳米纤维毡,于260‑280℃下预氧化1‑2h后,在氩气气氛保护下800‑1000℃之间碳化3‑6h。通过先配置核结构的前驱体溶液和壳结构的前驱体溶液,然后通过同轴静电纺丝技术简单易行地制备出具有良好的电化学性能的并能应用于锂离子电池负极材料的硅碳复合材料,满足使用的需要。
一种聚合物锂离子电池自放电筛选工艺,该工艺是电池在不同荷电状态SOC下,先通过高温45℃储存老化后测试电池电压值(时间点H1、电压V1),再经过相对湿度为60%~70%的高湿储存后,测试电池电压值(时间点H2、电压V2),根据计算公式电压降K值=(V1‑V2)/(H2‑H1)自动计算出电池电压的自放电变化值,筛选出自放电K值≥2mV/d电池挑出。本发明能非常有效地筛选自放电大的电池,可以大大提高锂离子电池自放电大的检出率,加快检出效率,提高产品质量。
本发明提供了一种异型锂离子电池,该异型锂离子电池包括:两个宽度相同长度不同的电芯、包覆在两个所述电芯外部的壳体和填充在所述壳体内部的电解液;其中,两个所述电芯的对应极耳相对设置且两个所述电芯叠放设置,以使所述电池呈阶梯状。本发明通过两个宽度相同长度不同的电芯对应极耳相对设且叠放设置,使得该电池呈阶梯状,以最大尺度的利用空间,提升电池的容量即提高设备电池的能量,进而延长了电池的续航时间,保证了续航能力,以提高该电池的使用时间,从而使该电池在智能可穿戴设备、无人机、巡检机器人等领域具有广泛的应用前景。
本发明公开一种用作锂离子电池电极材料的硒化铜纳米材料及其制备方法,该纳米材料为片状纳米结构。该Cu2‑xSe纳米材料采用了一步水热的合成方法,以SeO2为硒源,CuCl2·2H2O为铜源,一步水热合成Cu2‑xSe。制备的Cu2‑xSe纳米材料表现出结构纯度高、形貌均匀、粒度大小不一的特性。以此作为电极材料装配成锂离子电池,进行电化学性能测试,其初始比容量始比容量可达345.75mAh/g,非常接近理论值376mAh/g,电荷转移阻抗可低至1.32Ω/cm2。本发明制备的硒化铜纳米电极材料具有比电容高、阻抗低、制备方法简单、成本低等特点。
本发明公开了一种分布式电源系统高压锂电池结构,涉及锂电池领域,包括电池外壳、电芯模组、热插拔连接器;所述电芯模组包括若干个单个模组,各单个模组相互独立设置在所述电池外壳内,所述电池外壳上设有热插拔连接器,所述热插拔连接器与分布式电源系统匹配对接。本发明的优点在于:实现了电芯模组的模块化及快捷维护;实现了系统快速安全部署;设置系统热管理专用风道,有合理的散热管理系统。
本发明提供一种锂离子电池负极极片的制作方法,包括如下步骤:步骤一:取负极集流体,并对负极集流体进行表面预处理;步骤二:取一定量的锡基材料及硅基材料的混合物粉末,加入粘结剂调成糊状,形成负极活性物质,将所得的负极活性物质涂覆于负极集流体上,得到初级负极材料;步骤三:对步骤二制得的初级负极材料进行表面激光熔化,在初级负极材料的表面形成熔覆层,得到锡硅复合薄膜负极极片。步骤四:对步骤三得到的锡硅复合薄膜负极极片进行热处理,得到最终的复合材料负极极片。本发明提供的锂离子电池负极极片的制作方法所制作的负极极片体积变化可控、比容量高且化学性能、循环性能稳定。
一种溴化锂热泵机房漏水监测报警系统,针对目前溴化锂热泵机房漏水判断准确性较低和无法远程监测等问题,本发明基于物联网技术,采用漏水监测传感器监测机房若干位置的漏水情况并通过wifi协议将信息发送至路由节点,采用专家经验系统判断机房漏水的严重情况,并按照判断结果进行信息传输和远程报警;提高了机房漏水监测的准确性,给出了机房漏水监测系统的一种完整解决方案。
本发明涉及一种铽掺杂磷酸镁锂光激励发光剂量片的制备方法,该方法由原材料LiOH·H2O、Mg(NO3)2·6H2O、NH4H2PO4、H3BO3和Tb4O7经研磨、预烧、压坯、高温烧结制成,通过本发明所述方法获得的铽掺杂磷酸镁锂光激励发光剂量片在个人辐射剂量监测方面,相对于粉体材料更易于携带;在组建光纤辐射剂量在线测量系统方面,片状辐射剂量敏感材料比粉体材料更易与光纤整合得到剂量探头;在剂量片制备方法方面,采用低温预烧的方法得到中间粉体,避免了由高温烧结后再研磨得到粉体材料过程造成的材料污染和设备损伤,并且节省了大量的时间和能源,提高了材料品质;在剂量片的性能方面,所制备出的剂量片可以应用于个人剂量测量以及环境、医学的辐射剂量的实时在线测量。
本发明公开一种锂离子电池用铝箔、微孔铝箔及微孔铝箔的制备方法,铝箔包括0.18‑0.20wt%的Mg、Si≤0.08wt%、Fe≤0.2wt%、Ga≤0.03wt%、Cu≤0.04wt%、Zn≤0.04wt%、V≤0.05wt%、Ti≤0.03wt%、铝为99.7 wt%;采用化学腐蚀方法制备成微孔铝箔;微孔铝箔每平方厘米上分布有300—6000个直径为6—12μm的通孔和/或盲孔;限定的成分组成与现有系列铝合金相比,具有更高的屈服强度,在后续的化学腐蚀过程中,对于所成的微孔孔径更小也更加均匀,通孔和盲孔与材料本体圆弧过渡,减少应力集中,增强力学性能,不会减弱电学性能,本发明可用于锂电池中。
本发明公开了一种圆柱形锂离子电池盖帽,包括顶盖、设有防爆线的防爆膜、设有多个第一通孔的孔板、密封圈,所述顶盖、防爆膜和孔板由上到下依次叠放,所述顶盖与防爆膜包裹于密封圈内,所述防爆膜中部与孔板中部连接,孔板外边卡入设于密封圈内部的卡槽,还包括一PTC板,所述PTC板外边卡入卡槽,所述PTC板与孔板顶触连接,所述PTC板开设有多个配合所述第一通孔的第二通孔。本发明提供一种防止温度升高较为灵敏准确的圆柱形锂离子电池盖帽。
本发明为一种锂电池芯结构,包括软性外壳及电极柄,软性外壳具有容置空间及待封合边,电极柄穿设待封合边并伸入容置空间,待封合边包含第一密封区及第二密封区,第一密封区及第二密封区通过封合手段而密封成封合边,且第一密封区具有第一密合力,第二密封区具有第二密合力,其中,第二密合力小于第一密合力,累积在容置空间中的气体自第二密封区外泄至外部,据此适时地排出电池内的气体,藉以维持电池芯的内部压力提升电池芯的安全性。本发明还提供一种锂电池芯的制法。
本发明公开了一种锂硫电池电解液及其制备方法,锂硫电池电解液包含有硒醚添加剂;所述硒醚添加剂为二甲基硒醚、二甲基二硒醚、二甲基三硒醚、二苯甲基硒醚、二苯基二硒醚、乙酸硒醚、丙酸硒醚或丙酸二硒醚,或其中的至少两种及以上;所述硒醚添加剂在电解液中的质量百分含量为0.1%~10%。采用本发明的制备方法制备出的电解液,以及使用了该电解液的电池,可以有效地降低电池内阻,并在电池电极表面形成钝化层,提高电池的放电比容量、循环性能和库伦效率。
本发明公开了一种锂电池回收的废气净化和资源回收的系统,包括依次连通的热解装置、第二除尘装置、气体混合器、燃烧室和锅炉,拆分装置、第一除尘装置和所述气体混合器依次连通,水合塔、一级磷酸捕集器、混酸池、二级磷酸捕集器、氢氟酸回收塔和净化塔依次连通,本发明还公开了一种锂电池回收的废气净化和资源回收的方法。本发明的优点为实现了P2O5和HF的分离提纯,利用碳酸酯类有机物燃烧的能量,分级提取副产物磷酸、氢氟酸或氟化铵产品,使废水及废渣的处理难度大大降低,环境友好。另外,由于副产物现在市场价值较高,使本环保项目运行有较好的经济效益,节约资源。
一种碳纳米管复合镍锰酸锂高压正极材料的制备方法,本发明涉及一种碳纳米管复合镍锰酸锂高压正极材料的制备方法,本发明的目的是为了解决现有LiNi0.5Mn1.5O4正极材料电导率较低,导致其倍率性能较差的问题,本发明利用共沉淀法制备实体球形正极材料LiNi0.5Mn1.5O4前驱体,然后与Li2CO3反应制得LiNi0.5Mn1.5O4正极材料,再与碳纳米管分散于乙醇酒精中,超声搅拌,进行恒温反应,使碳纳米管复合到球形LiNi0.5Mn1.5O4的表面上,即完成。本发明提供的复合材料具有三维协同导电网络,具有更好的导电性和高载流能力,具有高的放电比容量和倍率性能。本发明应用于电化学材料储能领域。
本发明提供了一种包覆型锂离子电池正极活性材料及其制备方法,属于锂离子电池正极材料技术领域。本发明以静电作用力为包覆驱动力,将带相反电荷的正极活性材料粒子和包覆材料粒子在溶液中进行复合化处理,通过静电吸引力使包覆材料粒子吸附在正极活性材料粒子的表面,且与用量相结合,使得正极活性材料粒子表面吸附包覆材料粒子,然后通过烧结,可将阳离子聚电解质和阴离子聚电解质分解,去除影响包覆型正极活性材料性能的有机物,从而得到循环稳定性优异的包覆型正极活性材料。
本发明公开了一种可扩容的UPS用锂电池系统及其控制方法,属于电池技术领域。包括电池组110、可调负载、电流互感器、第一开关和电池管理系统;其中,一个以上的所述电池组110互相并联,电池组110的一端为与负载一端连接的第一接线端,所述电池组110另一端连接可调负载的一端,所述可调负载的另一端为与所述负载另一端的第二接线端,可调负载所在线路穿过所述电流互感器的线圈中心,第一开关的第一端与第一接线端连接,所述第一开关的第二端与第二接线端连接,所述第一开关的第三端、所述电流互感器的输出端与所述可调负载均与电池管理系统连接。针对现有技术中的UPS用锂电池扩容时存在环流的技术问题,它可以消除环流干扰。
本发明公开了一种锂硫电池用多孔碳硫复合正极材料,由如下重量份原料制成:35‑50份改性石墨烯多孔碳材料,200‑230份乙二醇,10‑15份掺杂剂,2‑6份炭黑,15‑25份单质硫,225‑250份N‑甲基吡咯烷酮;本发明还公开了一种锂硫电池用多孔碳硫复合正极材料的制备方法;改性石墨烯多孔碳材料具有多孔结构与褶皱形貌,而且不会产生聚集,具有超高的比表面积和孔隙率,能够更多的将硫单质进行负载,本发明制备出的正极材料在使用过程中,超高的比表面积使得该改性石墨烯多孔碳材料能够与电解液充分接触,并且形成双电子层,而且其较高的孔隙率能够为电子的快速转移提供通道,便于电荷传输,进而具有更加优异的导电性能。
本发明公开了一种动力锂电池极耳热复合成型工艺,该工艺具体包括以下步骤:步骤一、制备金属导体条;步骤二、制备极耳胶;步骤三、将制备的金属导体条进行加热,用将制备的极耳胶送料至加热后的金属导体条表面进行热压合,热压合完毕后停止对金属导体条加热。本发明一种动力锂电池极耳热复合成型工艺得到的极耳结构稳定、导热性、绝缘鞋都超过市场同类产品,且生产成本也没有较大上升。
本发明公开了一种锂离子电池用离子导电型交联粘结剂及其制备方法,属于高分子材料和锂离子电池技术领域。首先,由多巴胺甲基丙烯酰胺、含有羟基的烯基单体以及含有双键的长链聚醚化合物在引发剂作用下通过简单高效的自由基聚合方法制备功能性聚合物;然后将合成的功能性聚合物通过酯化作用与含羧基大分子链交联,制得离子导电型自愈合交联网络粘结剂。与现有粘结剂相比,采用本发明的方法制备的粘结剂具有高粘性、优异机械强度和优良离子导电性,用于硅基电极制备可以显著提升其循环稳定性及倍率性能。
本发明提供一种新型石墨烯/SnS2复合材料的锂离子电池负极材料的制备方法,包括如下步骤:(1)氧化石墨烯的制备;(2)氧化石墨烯悬浮液的制备;(3)混合溶液的制备;(4)将步骤3得到的混合溶液转移至四氟乙烯的水热反应釜中,加入去离子水,盖紧后,将水热反应釜移至180℃烘箱内保持12‑18h,然后取出待其自然冷却至室温,将得到的水热产物经去离子水和无水乙醇分别洗涤3次,并在80℃真空干燥箱内干燥12‑18h,得到新型石墨烯/SnS2复合材料的锂离子电池负极材料。本发明有效地提高材料的稳定性以及导电性,提高电池性能,具有较大的比容量和较好的循环性能。
本发明提供一种锂离子电池专用石墨烯导电浆料,由如下重量份的原料制备而成:石墨烯10‑15份,碳纳米管0.5‑2份,乙炔黑0.2‑0.5份,纳米硅粉0.1‑0.3份,硫酸镁溶液40‑60份,分散剂1‑3份,N‑甲基吡咯烷酮80‑100份。一种锂离子电池专用石墨烯导电浆料及其制备方法,该导电浆料具有优异的导电性能、具有高稳定性,具有良好的耐湿性能。
本发明提供了一种酚醛树脂修饰的锂离子电池硅基负极材料及制备方法,该材料通过使用酚醛树脂对硅纳米颗粒改性后热解制得,即在纳米硅颗粒表面进行酚醛树脂交联,使交联后的酚醛树脂将纳米硅颗粒包覆,然后于惰性氛围中热解得到多孔碳包覆的纳米硅复合材料,即酚醛树脂修饰的锂电子电池硅基负极材料。该多孔碳包覆的纳米硅复合材料的导电性以及充放电过程的体积变化相较于硅纳米颗粒有了明显改善,容量保持能力高,电化学性能优异;而且本发明在制备过程使用绿色低成本的酚醛树脂作为包覆材料,制备方法简单,原料易得,条件温和,能够批量生产,具有美好的工业化制备前景。
本申请属于超级电容器的技术领域,尤其涉及一种锂离子电容器的负极电极片及其制备方法。本申请提供了一种负极电极片,由以下步骤制备得到:步骤1、将负极活性材料、导电剂和粘接剂混合后,碾压形成电极膜;步骤2、将所述电极膜与集流体通过导电胶粘贴,加热固化后得到负极电极片。本申请提供了一种负极电极片及其制备方法,用于解决现有技术中锂离子电容器的负极电极片存在的厚度较厚、机械性能差以及加工性能差的技术缺陷。
本发明公开了一种大电流锂锰扣式电池及其制备方法,属于扣式电池技术领域。该电池包括正极盖、负极盖和设于正极盖与负极盖之间形成的密封腔体内的电芯与电解液,电芯由正极片、隔膜与负极片叠放后折叠而成;正极片由铝拉网及碾压在铝拉网正反两面的锰电极材料构成,其反面为由折痕隔开的N片子正极片,其正面为由铝拉网裸露形成的1片正极和N‑1片连续的子正极片;负极片由铜网及敷设在铜网正反两面的锂电极材料构成,其正面为由铜网裸露形成的1片负极和N‑1片连续的子负极片,其反面为N片连续的子负极片;正极片与负极片之间设有隔膜使子正极片与子负极片隔开且其通过预定的方式组合后沿折痕同向顺次折叠构成电芯。
本发明提供一种能够获得即使在高温下保存也难以产生气体、在高温保存后容量维持率也高的锂离子二次电池等的电化学器件或组件的电解液。本发明的电解液的特征在于含有通式Y21R21C-CY22R22所示的化合物等,式中,R21和R22可以相同或不同,为H、烷基或卤代烷基;Y21和Y22可以相同或不同,为-OR23或卤原子,R23为H、烷基或卤代烷基。
本发明提供一种用于锂离子电池的注液方法,属于锂离子电池技术领域。注液方法包括:向烘烤完毕的电芯中注入电解液;将电芯在第一真空、常温的第一环境中静置;从第一环境中取出电芯,将电芯静置;第二次向电芯注入电解液;第一次将电芯在常温条件下静置;第一次将电芯在高温条件下静置;在第二真空环境下对电芯进行小电流充电;第二次将电芯在常温条件下静置;第二次将电芯在高温条件下静置;第三次向电芯注入电解液;第三次将电芯在常温条件下静置;第三次将电芯在高温条件下静置;以及在第三真空环境下再次对电芯进行充电。
本发明涉及一种硅碳复合负极材料的制备方法及锂离子电池,将纳米硅、石墨微粉置于球磨机中,在有机溶剂的环境中球磨均匀分散,真空干燥后与沥青置于锥形混合机中进行粗混,再将粗混后的混合粉末置于机械融合机内进行机械融合,最后在惰性气体的保护下进行热处理,冷却后得到硅碳复合负极材料。本发明对纳米硅进行沥青软化包覆,可避免硅颗粒与电解液直接接触,减缓容量衰减速度,同时缩短了锂离子的扩散路径,保证了电极材料的电子传导不会丧失,即提高首次充放效率,充放电容量和循环性能;包覆前,先利用石墨微粉将纳米硅分散,避免在于沥青包覆时,纳米硅聚集导致局部容量过剩,使得纳米硅分散均匀。
本发明涉及一种锂二次电池用复合隔膜以及包括其的锂二次电池,该复合隔膜具有改善电池使用寿命和安全性的优异效果;更具体地,涉及一种复合隔膜,其包括:多孔基层;形成在多孔基层的一侧或两侧的耐热层;以及形成在最外层上的熔合层,其中耐热层包括由粘合剂聚合物连接和固定的无机颗粒,熔合层包括熔融温度为100℃以上的颗粒形式的结晶聚合物。
中冶有色为您提供最新的有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!