本发明公开了一种替代丙烷磺内酯的添加剂,该添加剂具有特定的结构式。本发明还公开了一种使用该添加剂的锂离子电池电解液,以及含有该锂离子电池电解液的锂离子电池。本发明的替代丙烷磺内酯的添加剂形成的SEI膜具有较好的高温耐受性,有利于阻止电解液在高温下的分解,改善电池的高温性能;同时,该添加剂形成的SEI膜对锂离子的通透性较好,降低了成膜阻抗,有利于提高电池的低温循环性能。
本发明公开了一种碳氮锂多相掺杂锂离子电池负极材料及其制备方法及锂离子电池负极片和锂离子电池,将卤代胆碱型低共熔溶剂按比例均匀混合后得到低共熔溶剂后与木质纤维素混合,先进行预处理,然后高温碳化获得掺杂氮锂元素的碳材料,可应用于锂离子电池负极材料。本发明中所采用的前驱体是卤代锂与卤代胆碱及其衍生物均匀混合,前驱体绿色环保,来源广泛,价格低廉,均可从工业上大批量获得;本发明方法采用的制备工艺简洁,产率高,纯度好;本发明方法中涉及的反应体系成分简单,配置方便,操作简单,对设备要求低且不受地域限制,适合大规模工业生产。
本实用新型涉及一种三元锂电池回收制硫酸锂、碳酸锂、氢氧化锂的系统,属于废旧电池资源化回收技术领域。本实用新型中所述粉碎分选机分别与燃烧装置、残渣池和黑粉池连接,所述黑粉池和稀硫酸配置池均与混料机连接,所述混料机和氢气池均与回转窑连接,所述回转窑分别与蒸汽尾气处理单元和水浸池连接,所述水浸液配置池与水浸池连接,所述纯水箱与水浸液配置池连接,所述水浸池与含锂原液池连接,所述含锂原液池分别与镍钴锰干渣原料池和UF膜过滤单元连接,所述UF膜过滤单元分别与反洗外排液池和阴离子交换树脂单元连接,所述反洗外排液池与锂吸附单元连接,所述锂吸附单元分别与碳酸锂离心分离干燥母液池和阴离子交换树脂单元连接。
本发明提供了一种锂离子电池负极预锂化的方法,包括以下步骤:A)将锂箔压制于负极片上;所述负极片处于半干燥状态;B)将步骤A)得到的负极片置于密闭袋中进行抽真空处理。本申请还提供了一种经过预锂化的锂离子电池的制备方法。本申请通过对负极片进行预锂化,可产生SEI膜,使得化成过程中正极脱出的锂不会消耗于形成SEI膜,还可减少与电解液反应消耗的活性锂以及其它不可逆副反应消耗的锂,从而减少了不可逆容量,提高了锂离子电池的首次效率和容量。
本发明涉及含磷酸亚铁锂盐—碳的锂离子电池 正极复合材料的制备方法,该方法采用一步固相法将一定比例 的锂盐、Fe3+化合物和磷酸盐混 合均匀,然后将混合物在惰性气氛中热解,热解前加入一定量 的高分子聚合物,得到磷酸亚铁基锂盐—碳正极复合材料。该 方法不使用较贵的Fe2+原材料, 生产工艺简单、安全、成本低,所得正极复合材料纯度高,导 电性能得到改善,电化学性能得到很大提高,比容量高,循环 性能优良,具有3.4V左右的稳定放电电压平台。由该方法制 备出的锂离子电池材料可广泛应用于移动电话、笔记本电脑、 小型摄录像机、电动汽车等领域。
本发明公开了一种富锂锰材料、锂离子电池正极材料、锂离子电池正极片、锂离子电池及其制备方法,涉及锂离子电池技术领域。富锂锰材料的分子式为aLi2MnO3·(1‑a)LiNi0.5Mn1.5O4·(1‑a)LiNi0.5Mn0.5O2,其中0.01≤a≤0.3。正极材料包括上述富锂锰材料。正极片涂覆上述正极材料。锂离子电池正极材料活性物质为上述富锂锰材料,负极材料活性物质为SiO/C复合材料。本发明缓解了现有正极材料比容量不高、首次效率低以及负极材料库伦效率低、循环性能差的缺陷。本发明的锂离子电池通过正、负极材料的相互配合,得到的锂离子电池具有高比能量和高安全性,电池能量密度大于320Wh/kg。 1
本发明公开了一种镍‑磷‑氧复合锂离子电池负极材料及其制备方法及其制备得到的锂离子电池负极。所述制备方法包括以下步骤:将氯化胆碱和乙二醇混合,加热、搅拌得到低共熔溶剂;再加入阳离子表面活性剂,超声溶解后,依次加入六水合硝酸镍和磷酸二氢钠,超声溶解,得到反应前驱体溶液;将反应前驱体溶液加热回流,经清洗、干燥后即可得到镍磷氧微米球状锂离子电池负极材料,其主要成分为Ni、Ni3P、NiO,并在制备的过程中颗粒进行自组装成粒径为0.1~0.2μm的大尺寸微球材料。其具有优异的电化学性能。
本发明涉及一种三元锂电池回收制硫酸锂、碳酸锂、氢氧化锂的方法,属于废旧电池资源化回收技术领域。本发明中所述粉碎分选机分别与燃烧装置、残渣池和黑粉池连接,所述黑粉池和稀硫酸配置池均与混料机连接,所述混料机和氢气池均与回转窑连接,所述回转窑分别与蒸汽尾气处理单元和水浸池连接,所述水浸液配置池与水浸池连接,所述纯水箱与水浸液配置池连接,所述水浸池与含锂原液池连接,所述含锂原液池分别与镍钴锰干渣原料池和UF膜过滤单元连接,所述UF膜过滤单元分别与反洗外排液池和阴离子交换树脂单元连接,所述反洗外排液池与锂吸附单元连接,所述锂吸附单元分别与碳酸锂离心分离干燥母液池和阴离子交换树脂单元连接。
本发明公开了一种从磷酸铁锂中回收锂的方法。本发明将报废磷酸铁锂渣用硫酸和硫酸铁溶解,浸出铁、锂、磷,然后加入氧化剂,铁和磷酸根反应生成磷酸铁沉淀和少量氢氧化铁,锂转化为溶于水的硫酸锂溶液,过滤得硫酸锂溶液,用碳酸钠加入硫酸锂溶液制备碳酸锂产品,加入磷酸钠或者磷酸制备磷酸锂;磷酸锂用硫酸铁再次溶解,得到硫酸锂溶液和磷酸铁为主的化合物,硫酸锂溶液返回系统制备碳酸锂,磷酸铁渣通过煅烧去除渣里面的有机物及碳,然后浆化用于制备电池级磷酸铁。本发明从磷酸铁锂中回收锂的方法,该方法将锂全部转换为碳酸锂产品,且工艺流程短、成本低、锂回收率达97%,能有效回收磷酸铁锂中的金属锂,并将所有铁渣转化为电池级磷酸铁。
本发明公开了一种锰酸锂、钛酸锂与TiO2复合物纳米线及其制备方法,采用静电纺丝技术将一定量的钛酸四丁酯、乙酸锰、醋酸锂为主要原料溶于一定体积的N,N‑二甲基甲酰胺和乙醇,然后加入适量的聚乙烯吡咯烷酮,充分搅拌,得到澄清透明的纺丝前驱液,然后在一定的电压、流率以及一定的温度和湿度下进行静电纺丝;然后收集静电纺丝产物在马弗炉中退火烧结得到LiMn2O4·Li2TiO3·TiO2复合物纳米线。本发明制得的复合物纳米线具有良好的电化学性能,可应用于锂离子电池的电极材料,在整个制备过程中,操作简单,原料成本低,设备投资少,绿色环保,适合批量生产。
本发明公开了一种锂离子电池用镍锰锂复合材料的制备方法,包括如下步骤:(1)将硫酸镍、乙酸锂、氯化锰和硝酸镱与水混合,滴加浓度为4‑5mol/L的NaOH溶液,制的掺杂稀土元素镱的LiNi0.5Mn1.5O4前躯体;(2)将氧化石墨纳米材料配制10‑15mg/mL的氧化石墨烯水溶液,将氧化石墨烯水溶液倒入聚四氟乙烯为内胆的不锈钢反应釜中干燥,将粉末球磨后得到多孔石墨烯材料;(3)将掺杂稀土元素钇的LiNi0.5Mn1.5O4的前躯体和石墨烯进行球磨,烧结,即得到掺杂镱的镍锰锂‑石墨烯复合材料。本发明制备的锂离子电池用镍锰锂‑石墨烯复合材料,采用了湿法掺杂工艺,改善了其循环稳定性,增强了材料的导电性能;其在用于锂离子电池时,具有高的比容量以及较长的使用寿命。
根据CN216264806U、CN113664285A中所提到的金属材料切割装置在使用时,为方便金属材料的上下料,切割装置大多为露天设置,当切割装置对金属材料进行切割时易产生火星和碎屑,由于切割装置的露天设置易导致火星和碎屑四溅,对工作人员的正常工作造成影响,提高了工作人员的安全隐患,降低了金属材料切割的工作效率,为了解决上述问题,我们对此做出改进,提出一种金属材料加工用一体上下料切割装置。
本发明涉及一种锰锌软磁铁氧体材料及其制备方法,特别涉及一种差共模电感用高磁导率锰锌铁氧体材料及其制备方法,属于软磁铁氧体材料技术领域。
本发明为了解决传统CVD生长技术晶界分布和形貌不可控的问题,提供了一种可控生长六角星形单层MoS 2的方法,利用纳米粒径的MoO 3作为前驱体,配合碳布,从而可控地生长大面积均匀分布的六角星形单层MoS 2,所述六角星形单层MoS 2具有确定位置的晶界,有望为大规模制作基于过渡金属硫族化合物的忆阻器领域提供新思路。
中冶有色为您提供最新的浙江有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!