本发明公开了一种高导热层状石墨烯复合材料及制备方法,该复合材料包括还原氧化石墨烯、氧化纤维素纳米晶和环氧树脂,具有主要由还原氧化石墨烯层和氧化纤维素纳米晶/环氧树脂层交替构成的层状结构,氧化纤维素纳米晶/环氧树脂层为氧化纤维素纳米晶和环氧树脂的共混物;该复合材料中,还原氧化石墨烯与氧化纤维素纳米晶的质量比为2:1~1:9,还原氧化石墨烯与环氧树脂的质量比为6:1~1:15。本发明通过对复合材料的内部组成及结构、相应制备方法的整体流程工艺设计、各个步骤的参数条件进行改进,利用溶剂挥发自组装制备层状石墨烯复合材料,能够有效解决石墨烯复合材料尺寸小、导热性能不好等问题,材料的导热系数可达9~30W·m‑1·K‑1。
本发明涉及聚碳酸酯复合材料技术领域,具体公开了一种抗菌型高强聚碳酸酯复合材料及其制备方法。聚碳酸酯复合材料由原料聚碳酸酯、无机复配纳米抗菌剂和相容剂制备而成。按照重量份,上述各原料的重量份分别为:聚碳酸酯100份、无机复配纳米抗菌剂10-25份、相容剂1-3份。制备方法为:将上述备料在高速搅拌机中搅拌3-8分钟,然后将混合物置于230-245℃的混炼机中混炼5min,混炼物经粉碎、干燥后经双螺杆挤出机熔融挤出、造粒,即得抗菌型高强聚碳酸酯复合材料。本发明所制得的抗菌型高强聚碳酸酯复合材料不仅对金黄色葡萄球菌和大肠杆菌有抑制、杀菌效果,具有良好的抗菌性能,而且该复合材料力学强度较高,产品可用于食品、医疗及电器零部件等产品领域。
本发明公开了一种缝合筒体类复合材料的方法,属于复合材料缝合技术领域,解决了现有缝合筒体类材料的方法无法适配高强度复合材料缝合的技术问题。方法包括以下步骤:提供转台,将复合材料固定在转台上,其中,复合材料的轴线与转台的轴线同轴;依照目标间距在复合材料上制作多个缝合孔;提供缝合针缝合复合材料,复合材料随转台转动,缝合线随缝合针依次穿过多个缝合孔,使缝合线迹呈209线迹。本发明将209线迹应用在复合材料的缝合,209线迹中的缝合线对复合材料的应力均匀,且缝合线不易断裂。
本发明涉及一种复合材料与金属件的连接结构,包括复合材料和金属件,所述复合材料包括下层的复合材料嵌入板和上层的复合材料平铺板;所述金属件连接面设有凹槽;所述复合材料嵌入板填入凹槽;所述复合材料与凹槽利用韧性胶体一次辅助真空成型或分步辅助真空成型;本发明利用凹槽的结构特点及条状交叉的金属结构可以实现复合材料板和金属件的大面积连接;本发明对凹槽角度的限定、优选的卡紧夹、对复合材料板和金属件间隙处填充的短切纤维或毛毡及韧性胶体的固化,都能使复合材料板和金属件的连接更加稳固;本发明采用一次辅助真空成型或分步辅助真空成型,还能有效确保结构水密特性。
本发明涉及一种天然高分子/无机纳米抗菌复合材料及其制备方法。该种天然高分子/无机纳米抗菌复合材料,其特征在于:由纳米银溶胶和纳米氧化锌溶胶混合而成。其制备方法包括以下步骤:(1)纳米银溶胶的制备;(2)纳米氧化锌溶胶的制备;(3)天然高分子/无机纳米抗菌复合材料的制备:将步骤(1)所得纳米银溶胶与步骤(2)所得纳米氧化锌溶胶按体积比1:2-1:3混合,得到天然高分子/无机纳米抗菌复合材料。本发明所制备的天然高分子/无机纳米抗菌复合材料抗菌效果好、抗菌时效长且无毒无害。
本发明涉及一种纤维缠绕复合材料轴端部连接结构,包括复合材料轴身缠绕层、变截面金属预埋件、复合材料缠绕紧固层和端部法兰;变截面金属预埋件为圆形截面与多边形截面连续变化的环状金属构件,整体位于复合材料轴身缠绕层的端部内侧,复合材料轴身缠绕层采用长纤维连续缠绕工艺,在其芯轴和金属预埋件表面连续地按照设计角度进行缠绕成型;复合材料缠绕紧固层为设置于复合材料轴身缠绕层外部的大张力纤维缠绕紧固层,覆盖整个变截面金属预埋件区域;端部法兰设置于变截面金属预埋件的端部。本发明不仅能够保证复合材料轴身纤维的连续性,而且可实现扭矩、推力和拉力的良好传递,具有良好的连接强度、多种载荷传递功能和较高的工艺可现实性。
本发明涉及一种石墨烯纳米带/PMMA微发泡纳米复合材料的制备方法,具体是:通过氧化法纵向展开多壁碳纳米管得到氧化石墨烯纳米带,再将氧化石墨烯纳米带分散在N, N?二甲基甲酰胺(DMF)中高温回流进行还原得到石墨烯纳米带分散液,该分散液与PMMA共混后,经超声分散、反溶剂沉淀、冷冻干燥及热压成型处理得到石墨烯纳米带/PMMA纳米复合材料,然后将该纳米复合材料放置在模具中并置于高压反应釜中进行超临界二氧化碳饱和,饱和完毕经快速泄压得到石墨烯纳米带/PMMA微发泡纳米复合材料。本发明制备的微发泡材料泡孔孔径小,泡孔密度高,力学强度大,在航空航天、电子封装、汽车防护等领域具有广泛的应用前景。
本发明公开了一种复合材料及其制备方法。所述复合材料,包括二氧化硅空心纳米球和聚合物基体材料,所述二氧化硅空心纳米球分散于聚合物基体材料中,其添加量为聚合物基体材料的0.1wt.%~10wt.%。所述复合材料制备方法包括以下步骤:(1)采用溶胶-凝胶法制备二氧化硅空心纳米球;(2)将步骤(1)制备的二氧化硅空心纳米球分散于聚合物基体材料中,形成聚合物基体材料-二氧化硅空心球均匀分散体系;(3)加入固化剂将步骤(2)中得到的聚合物基体材料固化。本发明提供的聚合物基体材料-二氧化硅空心球复合材料,具有优良的力学性能和声学阻尼性能,且制备方法简单,反应条件温和。
本发明涉及基于垂直高分子薄膜阵列的高导热复合材料及其制备方法,本发明的方法包括以下步骤,1、将高分子薄膜切割成多个薄膜,在薄膜的表面开设通孔得到单元膜;2、在单元膜表面涂覆基质,得到单元复合材料;3、将单元复合材料层层堆叠,使得制备的通孔被涂覆的基质填满,得到复合材料块;4、对复合材料块进行热压处理后,沿垂直于单元复合材料表面的方向对复合材料块进行均匀切割,得到复合材料薄膜块;5、将复合材料薄膜块平铺拼接后形成大面积的垂直高分子薄膜阵列,通过热处理后得到完整的高导热复合材料。本发明能够改善石墨烯薄膜的界面结合性能,克服石墨烯薄膜层间极弱的层间结合力导致的低强度,并获得具有高热导率的复合材料。
一种石墨烯/玻璃纤维增强ABS复合材料,所述的石墨烯/玻璃纤维增强ABS复合材料,包括以下组分重量份数的组分:ABS60?90质量份、环氧树脂5?20质量份、石墨烯0.01?5质量份、玻璃纤维1?6质量份、硅烷偶联剂0.01?0.1质量份、乙醇1?2质量份、抗氧化剂0.05?2质量份、相容增韧剂0.5?3质量份。本发明还公开了上述石墨烯/玻璃纤维增强ABS复合材料的制备方法。本发明所制备的石墨烯/玻璃纤维增强ABS复合材料,不仅制备工艺简单,而且实验结果显示所制备的石墨烯/玻璃纤维增强ABS复合材料的热稳定性、强度和韧性明显改善,而且有效的消除了浮纤现象,因而可扩大ABS复合材料的实际应用。
本发明涉及硅藻土技术领域,且公开了一种壳聚糖‑聚乙烯醇接枝硅藻土复合吸附材料,复合材料对水中的磷以及海藻具有更高的吸附性,经过改性后的复合材料具有更高的比表面积,与水中磷的接触面积更高,硅藻土与壳聚糖之间能够形成更大的网状结构,而且壳聚糖具有的大量的氨基也会对磷进行吸附,同时,壳聚糖具有的大量游离氨基,会使得复合材料表面带大量正电荷,并借助复合材料间形成的架桥作用絮凝藻细胞,显著增加了复合材料对藻细胞的吸附能力,通过接枝聚乙烯醇,使得复合材料具有更高的亲水性,从而进一步提升复合材料的吸附效果。
本发明涉及高分子复合材料技术领域,具体而言,涉及山梨醇型超支化聚酯、制备方法、应用及聚丙烯复合材料。本发明将山梨醇结构引入端羧基超支化聚酯的分支端,使聚丙烯复合材料中的玻璃纤维与聚丙烯的界面强度有效提高,有效改善了玻璃纤维在聚丙烯中的分散和分布,提高了复合材料的表面光洁度,有效消除浮纤现象。同时该复合材料没有不良气味,使该复合材料在使用时的接受度有效提高。该复合材料具有良好的力学性能,特别是拉伸强度和冲击强度,可应用于前端模块、发动机罩盖、门内板等汽车轻量化材料以及电子电气、家电和运动器材领域,并具有工艺简单、附加值高、适于工业化生产等优点。
一种复合材料输电杆塔横担和杆体的安装连接方法,该方法使用金属连接部件(1)、带金属法兰盘(4)的复合材料杆体(2)、中间粘接金属衬套(5)的复合材料横担(3),所述的金属连接部件是上下两端为金属法兰盘的短管,中间有通孔,侧面开有螺栓孔(6),在所述的复合材料杆体和复合材料横担的连接部位金属连接部件分断杆塔,现场安装时,将金属连接部件的上下两端金属法兰盘分别与杆塔上下的复合材料杆体所带金属法兰盘通过螺栓固定,中间粘接金属衬套的复合材料横担从金属连接部件中间通孔穿过,横担不分节,然后螺栓穿过侧面螺栓孔固定金属衬套。本安装连接方法保证复合材料横担为一个整体,且横担安装方便,可靠性高。
本发明涉及纤维增强树脂基复合材料应用领域,尤其涉及一种功能型复合材料新型帽型筋材结构。包括复合材料预制体、复合材料蒙皮和芯材三部分,复合材料蒙皮分为0/90°铺层区、45°铺层区和过渡区三部分,复合材料预制体位于复合材料蒙皮面板与芯材之间,芯材表面与筋材表面平行,其底部与壳板直接连接。所述复合材料蒙皮2为纤维增强复合材料,所述复合材料蒙皮2面板与腹板连接区域增设复合材料弧形过渡区,本发明在保证加筋板刚度的前提下,解决复合材料加筋板普遍存在的板筋刚度过匹配问题,同时减轻结构重量,兼顾结构的其他功能要求。
一种石墨烯/玻璃纤维增强聚丙烯复合材料,所述的石墨烯/玻璃纤维增强聚丙烯复合材料,包括以下组分重量份数的组分:聚丙烯60?90质量份、环氧树脂5?20质量份、石墨烯0.01?5质量份、玻璃纤维5?20质量份、硅烷偶联剂0.1?1质量份、乙醇5?10质量份、抗氧化剂0.05?2质量份、相容增韧剂0.5?3质量份。本发明还公开了上述石墨烯/玻璃纤维增强聚丙烯复合材料的制备方法。本发明所制备的石墨烯/玻璃纤维增强聚丙烯复合材料,不仅制备工艺简单,而且实验结果显示所制备的石墨烯/玻璃纤维增强聚丙烯复合材料的热稳定性、强度和韧性明显改善,而且有效的消除了浮纤现象,因而可扩大聚丙烯复合材料的实际应用。
本发明涉及杆塔技术领域,且公开了一种窄线路走廊的输电线路复合材料门型塔,包括门型塔左侧复合材料杆,门型塔右侧复合材料杆,所述门型塔左侧复合材料杆与门型塔右侧复合材料杆之间设置有金属地线横担,所述门型塔左侧复合材料杆与门型塔右侧复合材料杆在顶部通过金属地线横担固定连接,该发明的复合材料门型塔其地线和导线均位于门型杆内部,沿路的导线走廊极窄,为土地紧张的经济发达地区提供了一种紧凑输电线路思路,缓解土地紧张的矛盾;单地线及导线都位于复合材料门型塔内侧,且地线和导线均匀分布在两侧复合材料杆塔连接的中心线附近左右,杆塔的受力相对均匀,导线对复合材料门型塔的整体不均匀受力较小,杆体结构稳定。
本发明涉及一种用于铝‑氧化银电池的银/碳纳米管复合材料及其制备方法和应用,包括以下步骤:步骤一:按质量份计,将155份乙酸银和1~10份碳纳米管混合,得到乙酸银/碳纳米管复合材料;步骤二:将乙酸银/碳纳米管复合材料进行热分解处理,得到银/碳纳米管复合材料。所述复合材料包括质量比为100:(1~10)的银和碳纳米管。本发明使用乙酸银/碳纳米管复合材料热分解处理得到银/碳纳米管复合材料,制备方法简单,利于产业化;所得复合材料均一稳定,粒径在1~2μm,作为碳纳米管/氧化银电极应用于铝‑氧化银电池中,利于降低其欧姆电阻,提高铝‑氧化银电池的平均放电电压,有效提高其电化学性能。
本发明属于电池储能领域,公开了Fe0.975S@NSC复合材料的制备方法和应用。将铁盐与成核剂在水溶液中慢慢混合,在150~200℃温度下水热处理,得到饼状Fe2O3前驱体;经界面修饰和高温固相硫化处理,得到Fe0.975S@NSC复合材料。本发明的制备方法简单,成本低廉,所制备的Fe0.975S@NSC复合材料结构稳定。将Fe0.975S@NSC复合材料分别作为锂离子电池和钠离子电池负极材料时,具有优异的储锂/钠容量、反应可逆性及倍率性能,且小电流密度下Fe0.975S@NSC复合材料的储锂储钠性能优于其它Fe和S比例的电极材料。
本发明公开了一种海藻酸基-导电聚合物复合材料的制备方法,属于导电高分子和生物材料领域。所述海藻酸基-导电聚合物复合材料的制备方法包括:将海藻酸基-单体复合材料浸泡在质量分数为0.1-20%的氧化剂中,浸泡后取出并洗涤、干燥得到具有导电性的海藻酸基-导电聚合物复合材料。本发明提供的海藻酸基-导电聚合物复合材料的方法简单,且易于操作,在制备中,海藻酸基-单体复合材料中的羧基官能团能够与单体形成较强的分子间作用力,从而增加了单体吸附在海藻酸基上的量,增加了海藻酸基-单体复合材料内导电聚合物的量,进而提高了海藻酸基-单体复合材料的导电性。本发明得到的海藻酸基-导电聚合物复合材料具有良好的导电和生物相容性。
本实用新型公开了一种充填复合材料和微载体的生物人工肝反应器,包括反应器外壳及设于反应器外壳两端的端盖,所述反应器外壳内填充有包含微载体的液体,所述反应器外壳内还布置有圆柱形的复合材料卷,复合材料卷中插设有多根中空纤维,中空纤维的两端仅分别与两端盖上的血液入口和血液出口相连通,复合材料卷与反应器外壳轴向相同布置且复合材料卷的外径和反应器外壳的内径相配合,所述复合材料卷为单层的复合材料螺旋盘卷得到,所述复合材料由一层无纺布及其上覆盖的细菌纤维素薄膜构成。本实用新型将螺旋形盘卷有中空纤维的复合材料卷置入生物人工肝反应器中,使得细胞附着在复合材料上,促进肝细胞的3-D培养,细胞形态更完整,培养效果更佳。
本发明针对现有导热绝缘复合材料导热绝缘性能及力学性能欠佳的缺点,提供了一种具有力学增强,电绝缘导热性能好的超支化聚合物包覆碳纳米管-聚氨酯复合材料及其制备方法。本发明材料的优越性在于超支化聚合物包覆碳纳米管的用量少,能够在聚氨酯中均匀分散,并与聚氨酯相容性好,超支化聚合物包覆层增强了碳纳米管与聚氨酯之间的界面结合力,提高了复合材料的力学性能,并使得复合材料的导热性得到改善,同时满足了电气绝缘性能的要求。
本发明提供了一种紫外光快速固化具有一定厚度玻璃纤维增强树脂基结构修复用复合材料预浸料及其制备方法。本方法以普通自由基固化型树脂为基体,优选适当的光引发剂、热引发剂及其他助剂构成“光-热复合引发体系”,以玻璃纤维织物作为增强材料,采用适当的复合工艺制备成具有一定厚度的复合材料预浸料。该预浸料可通过紫外光单面照射10分钟内完成固化,且一次性光固化的厚度可达15mm以上。本发明解决了目前紫外光不能一次性固化大厚度(10-15mm及以上)复合材料结构件的技术难题,使复合材料预浸料的固化变得更加方便高效。这种光固化树脂及其复合材料在某些特定领域比如市政排水管道的非开挖修补方面表现出了巨大的应用前景和市场潜力。
本发明属于复合材料技术领域,具体涉及一种防辐射梯度复合材料及其制备方法与应用。以重量份计,所述防辐射梯度复合材料包括如下的组分:芯层复合晶体30~40份、BECQ粉末35~50份、聚乙二醇20~35份。所述防辐射梯度复合材料包括BECQ粉末内层和芯层复合晶体外层。本发明的防辐射梯度复合材料是在所述BECQ粉末的基础上,再加入芯层复合晶体层,芯层复合晶体层主要成分为MoO3晶体,该晶体具有很好的屏蔽特性,外层芯层复合晶能吸收、衰减辐射射线,内层BECQ粉末对衰减辐射射线进一步的衰减、吸收,两者之间通过协同作用,能高效的屏蔽辐射射线,因此,在材料领域具有一定的应用前景。
本发明公开一种有钢制连接构件的金属基复合材料耐磨体及其制造耐磨件的方法。钢制连接构件用于连接复合材料耐磨体和耐磨件基体,钢制连接构件与金属基复合材料一体压制烧结冶金结合成型。金属基复合材料耐磨体的钢制连接构件为低碳钢板壳体和一定数量的双头锥形圆钢及连接固定锥形圆钢的钢板组成,金属基复合材料耐磨体冶金结合烧结于低碳钢板壳体中,锥形圆钢的一定长度冶金结合烧结于金属基复合材料耐磨体中,一定长度在金属基复合材料耐磨体之外的锥形圆钢用于镶铸连接耐磨件基体,连接固定锥形圆钢的钢板上烧结有自熔合金层利于与耐磨件基体形成冶金结合。金属基复合材料耐磨体外表面的低碳钢板壳体之间焊接组装成耐磨件所需要的形状的整体镶铸构件,将该整体镶铸构件安装固定于铸型中浇注凝固得耐磨铸件。
本发明涉及一种复合材料相变蓄热球及其制备方法。其技术方案是:将铝硅合金粉置于成球机中,间歇式喷洒磷酸二氢铝溶液,制得铝硅合金球。向所述铝硅合金球喷洒表面改性剂,再于成球机中加入α‑Al2O3粉,滚动成球,得到复合材料相变蓄热球坯体。向所述复合材料相变蓄热球坯体喷洒去离子水,10~30s后加入α‑Al2O3粉,滚动,得到复合材料相变蓄热球坯Ⅰ。重复复合材料相变蓄热球坯Ⅰ的制备过程至复合材料相变蓄热球坯体n的直径与所述铝硅合金球的直径比为6∶(1~5)。将所述复合材料相变蓄热球坯n置于马弗炉中,在800~1500℃保温2~8h,制得复合材料相变蓄热球。本发明工艺简单和成本低;所制制品的热量利用率大、使用温度高和壳层强度大。
本发明公开了一种基于超低反射率FBG阵列传感器的智能蜂窝复合材料,包括埋入超低反射率FBG阵列传感器的光纤蜂窝复合材料组件,光纤蜂窝复合材料组件依次连接数据处理单元、频谱分析仪、计算机。本发明将双芯超低反射率FBG阵列传感器埋入蜂窝复合材料夹层之中,采用时分波分混用解调,可以同时监测感应蜂窝复合材料自身应力和应变、温度、裂纹、振动多种参量,构建监测蜂窝复合材料状态的分布式传感网络,具有抗电磁干扰、抗腐蚀、耐高温、防爆、频带宽、损耗低、精度较高等特点,实现智能蜂窝复合材料的自感知、自评估,为蜂窝复合材料构件在高速运行器上的长期安全运行提供保障。
本发明涉及一种聚合物/层状硅酸盐纳米复合材料的制备方法。聚合物/层状硅酸盐纳米复合材料的制备方法,包括如下步骤:(1)在常温下,将聚合物与经有机改性的层状硅酸盐矿物进行机械混合,混匀后的物料置于容器中,压实密封;其中:层状硅酸盐矿物的纯度≥90%,层状硅酸盐矿物所占总质量百分比为2-20%,所述的层状硅酸盐矿物为累托石或蒙托石,聚合物为酚醛树脂或环氧树脂;(2)封装好的物料外层以叶腊石为传压介质,放入静高压设备中,施加压力为100-800Mpa,保压时间10至15分钟,卸压,取出物料;将物料粉碎,粉碎后60℃下烘干2-4小时,即得到聚合物/层状硅酸盐纳米复合材料。本发明工艺简单,本发明能使树脂聚合物基体中95%以上的层状矿物的晶层被纳米剥离。
本申请提供了一种复合材料分层损伤监测方法,所述方法包括:用亚光漆在复合材料结构表面均匀布置散斑点;对所述复合材料结构施加特定载荷,并用三维光学测量设备进行光学测量;获取所述复合材料结构的初始损伤特性;对所述复合材料结构重复施加特定载荷,并基于预设周期对所述复合材料结构进行光学测量,获取所述复合材料结构分层损伤的扩展特性;本申请提供的一种复合材料分层损伤监测方法,通过三维光学测量技术监测复合材料结构分层损伤及其扩展状态,精确确定分层损伤的位置、大小和形状等特性。
本发明涉及一种金刚石复合材料的制备方法。采用放电等离子烧结制备超高硬度金刚石复合材料的方法,其特征是它包括如下步骤:(1)粉体表面修饰;在金刚石粉体表面沉积包覆0.1~50纳米厚度的碳化硅薄膜;(2)干燥;(3)加入烧结助剂:与非晶态二氧化硅粉体混合,研磨,得到复合粉体;(4)放电等离子烧结:在30~100?MPa烧结压力下,温度1400~1700℃下,放电等离子烧结10~30分钟,得到复合材料;(5)脱模抛光,获得超高硬度金刚石复合材料。获得超高硬度金刚石复合材料,最佳硬度可达36?GPa。该方法烧结压力低,100?MPa烧结压力为常规金刚石制备压力(5GPa以上)的2%,该方法制备的金刚石复合材料致密度高、硬度高。
本发明公开了一种用于宫内节育器的多孔结构复合材料及其制备方法,该材料包含具有多孔结构的聚合物骨架及分散其中的金属粒子,它是通过将金属粒子、基体聚合物和致孔剂三者的均匀混合物经注塑或压注等得到的致密结构复合材料中的致孔剂萃取清除而获得(致孔剂优选DTBHQ、萃取溶剂优选乙酸乙酯、萃取方式优选索氏抽提法)。这种用于宫内节育器的多孔结构复合材料,在完全继承用于宫内节育器的致密结构复合材料的优点即大幅减轻传统裸铜结构宫内节育器带来的出血和疼痛等副反应之外,还具有一个独特优势,即多孔结构的引入可大幅提高铜粒子的有效利用率,进而在铜粒子加入量保持不变的情况下有效提高该复合材料所制备的宫内节育器的使用寿命。
中冶有色为您提供最新的湖北有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!