本发明公开了一种石墨烯/Ag/AgVO3纳米带复合物的制备方法。首先通过AgNO3、NH4VO3和吡啶混合溶液水热法合成AgVO3,再在洗涤后的产物中加入1mL C9H23NO3Si,搅拌反应后再加入1mg/mL的氧化石墨烯,水热反应得到石墨烯/AgVO3。通过加入一定量的水合肼还原石墨烯/AgVO3中部分的银离子,得到石墨烯/Ag/AgVO3纳米带复合物。石墨烯包裹Ag/AgVO3纳米带复合物明显增强了它们的光催化活性与电容比容量。石墨烯/Ag/AgVO3(含银15%)催化降解甲基橙效率明显AgVO3。与石墨烯包裹AgVO3复合材料的循环伏安曲线相比较,将样品中部分银离子还原后,循环性能较稳定,组装的柔性电容器的比容量更大。
本发明提供一种锂离子/钠离子电池的负极材料钼锡双金属硫化物及其制备方法,属于锂电池技术技术领域。所述制备方法包括的步骤为:以商业化草酸锡微米棒为前躯体,通过简单的热处理制备含有多孔结构的二氧化锡微米棒;然后加入一定量的钼酸铵、盐酸多巴胺、乙醇和氨水溶液,搅拌反应之后,经过离心、干燥得到复合前躯体,再将复合前躯体在惰性气氛下进行硫化处理,自然冷却之后,即可得到锂离子/钠离子电池用棒状结构SnS/MoS2@C复合材料。本发明制备到的负极材料是具有棒状结构的钼锡双金属硫化物,且外侧包覆有碳层,进一步提高其作为负极材料的比容量、循环稳定性以及循环寿命。
本发明公开了一种基于以蛋白质为载体的无酶葡萄糖传感器的制备方法,称量蛋白质并取金属盐,加入烧瓶中进行搅拌,得到前驱液,在所述前驱液中加入还原剂并搅拌进行水热反应,通过离心洗涤干燥,得到以蛋白质为载体的金属材料,称量所述蛋白质为载体的金属材料和碳材料,并加入去离子水中,通过超声的方式得到蛋白质为载体的金属材料‑碳材料复合材料,离心洗涤干燥后,修饰贵金属电极,使贵金属电极表面被所述蛋白质为载体的金属材料‑碳材料复合材料覆盖,形成修饰贵金属电极,此电极对葡萄糖的电催化活性高、抗干扰性好、稳定性高、生物相容性好,制备简便并且成本低,有利于大量制备。
本发明公开了一种纳米氧化锌‑剑麻纤维炭复合物的制备方法。将剑麻纤维预处理之后,通过两步水热法,洗净并炭化,得到剑麻纤维炭。以剑麻纤维炭、水溶性锌盐、氢氧化钠为原料,聚乙二醇为分散剂,采用沉淀‑浸渍的方法制备纳米氧化锌‑剑麻纤维炭复合材料,以亚甲基蓝溶液研究该复合材料光催化及吸附性能。所制得的纳米氧化锌‑剑麻纤维炭复合物具有良好的吸附和光催化性能,在紫外光作用下,其对亚甲基蓝的去除率高达98%以上。在协同效应的作用下,本发明制备的纳米氧化锌‑剑麻纤维炭复合物对染料的去除率比未掺杂的剑麻纤维炭大大增强,实现了剑麻纤维炭的吸附性能与纳米氧化物光催化性能有效结合,为废污处理提供了一条更有效的途径。
本发明提供一种Co?Bi?B催化铝/水反应的制氢材料及其制备方法,该材料由铝粉与Co?Bi?B混合机械球磨而成;其中,Co?Bi?B是由CoCl2.6H2O和BiCl3溶解于溶剂后,加入NaBH4,通过化学还原法制得。其制备方法包括:1)Co?Bi?B的制备与干燥;2)铝粉和Co?Bi?B的称量与准备;3)铝粉和Co?Bi?B的制备。本发明具有以下优点:1、在中性溶液和室温的条件下,产氢量能达到1196mL/g(复合材料),产氢率达到97.7%;2、Co?Bi?B对铝/水制氢材料催化活性高,避免了铝被氧化的现象;3、成本低廉,便于携带,能够随时制氢供氢。因此,本发明具有广阔的应用前景。
一种大尺寸不锈钢-铜合金复合板材异步热轧工艺,涉及一种金属材料加工工艺,包括步骤:①选取复合板材;②钢刷打磨;③加热处理;④对辊轧机的上下轧辊进行全面加热;⑤一道次轧制复合;⑥校平处理;⑦退火处理;⑧表面处理;⑨分剪或切割、切边处理;⑩验收与入库。本发明可使金属材料表面不易氧化,其复合材料界面的冶金结合率高,而且产品具有较好的机械性能和较高的剥离强度,适于制备大尺寸长型复合板材,具有生产效率高,生产成本低等特点,应用较为广泛。
本发明公开了一种适用于烟气中NO吸附分离的具有高分散纳米Rh组分的复合MOFs材料,其特征在于以MOF‑177金属有机框架材料为载体,以浸渍法制备出内含高度分散性且高稳定性纳米Rh粒子的Rh/MOF‑177复合材料,所得Rh/MOF‑177复合材料中纳米Rh粒子尺寸具有约1.6nm大小水平,该孔性纳米复合材料为一种可于烟气中NO吸附分离的新型吸附材料。
本发明提供一种锂离子电池负极材料棒状锡锑合金的制备方法,属于锂电池负极材料技术领域。该方法包括以下步骤:取锑源和硫源加入水中搅拌得悬浮液;将悬浮液水热反应得到Sb2S3纳米棒粉末;将Sb2S3纳米棒粉末分散成悬浮液;称取锡源和尿素加入到所得的悬浮液中水热反应得Sb2S3@SnO2粉末;将Sb2S3@SnO2粉末加入到由去离子水和乙醇配制的混合液中,加入碳源,过滤、洗涤、干燥得到前躯体粉末,将前躯体粉末在还原气氛下,在500‑800℃下热处理2‑12小时,自然冷却得到SnSb@C纳米棒复合材料。该方法制备得到的复合材料可在充放电过程中有效抑制复合材料的体积膨胀,显著提高材料的循环稳定性。
本发明公开了一种塑料增韧分散剂的制备方法及其应用。采用氧化石墨烯、端羧基超支化聚酯为主要原料,制备一种塑料增韧分散剂,利用氧化石墨烯较为活跃的反应性及其界面活性功能,采用活性高、粘度低分散性好端羧基超支化聚酯进行接枝,改性氧化石墨烯表面,使其具有更好的有机溶剂溶解分散性,同时其通过氢键与塑料复合材料形成化学键,锚固桥接塑料树脂及其各个组分,使得复合材料的力学性能及其他性能得到大的提高。本发明制备塑料增韧分散剂所用的设备、方法简单,成不低,易于大规模推广,所制得的塑料增韧分散剂的添加量小,改性方法方便,改善塑料类复合材料的力学性能、加工性能和热性能等有较为明显的效果。
本发明公开了一种磷酸锌/碳复合负极活性材料,在氩气气氛下煅烧,将葡萄糖热解生成的碳覆盖在磷酸锌表面。将磷酸锌分散于葡萄糖溶液中,搅拌至水分蒸干,在氩气气氛下于600℃焙烧6h,使得葡萄糖热解生成的无定型碳包覆在磷酸锌表面,得到磷酸锌/碳复合材料。电化学测试结果表明,该复合材料作为锌镍电池负极活性物质具有良好的电化学反应活性和循环稳定性,经过100次充放电循环后,其比容量为349mA·h/g,容量保持率达96.4%,表明磷酸锌/碳复合材料作为锌镍电池负极具有优异的电化学性能。
本发明公开了一种新型锂离子电池负极材料Al@MIL‑53的制备方法及应用。以铝粉和对苯二甲酸为原料,首先将铝粉和对苯二甲酸混合均匀,将其加入不同体积比的无水乙醇和去离子水的混合溶液中超声1h,然后将其转移到100mL反应釜中,放置在恒温烘箱中150℃保温12h。将所得的沉淀物经过滤收集,用去离子水多次洗涤,将其在120℃真空烘箱中干燥12h,然后在氩气气氛中330℃活化48h,得到Al@MIL‑53复合材料。该Al@MIL‑53复合材料作为锂离子电池负极材料应用于制备锂离子电池。本发明方法简便、成本低、产率高、制备条件易于控制,适用于大规模生产,并且制备的Al@MIL‑53复合材料作为锂离子电池负极材料具有较好的可逆放电比容量、出色的循环稳定性和倍率性能。
本发明公开了一种用于治理滑坡地质灾害的锚固材料及其制备方法。所述用于治理滑坡地质灾害的锚固材料,包括碳丝维复合材料和钢筋材料,其中:所述碳丝维复合材料由聚丙烯腈基碳纤维和沥青基碳纤维按1:3.0~5.0的重量配比组成,其中沥青基碳纤维由石油沥青和煤沥青按0.8~1.2:1的重量配比组成;所述碳丝维复合材料和钢筋材料的重量配比为1:4.0~6.0。本发明所述锚固材料成本低、轻质高强且耐腐蚀,较现有材料更适合用于治理滑坡地质灾害。
本发明公开了一种利用多孔碳聚苯胺制备耐高压电极材料的方法,包括制备羟基化多孔碳、制备羟基化多孔碳/聚苯胺复合材料、制备成电极片以及进行电化学性能测试。本发明的有益效果是:以小麦粉为碳源,氢氧化钾(KOH),尿素为原料,其中氢氧化钾为活化剂,经高温碳化‑酸处理的方法得到氮掺杂的羟基化多孔碳为前驱体,然后通过原位聚合方法制备羟基化多孔碳/聚苯胺复合材料;本发明制备出的聚苯胺包覆羟基化多孔碳的复合材料,具有导电性能优异、比表面积大、物理化学性质稳定的优点,可作为具有超高电压窗口的水系超级电容器的电极材料。
本发明公开了一种分散乳化辅助Hummers法制备氧化石墨烯的方法。首先采用Hummers法制备氧化石墨烯前驱体悬浮液,经反复超纯水清洗-低速离心操作得到中性氧化石墨烯前驱体,最后将中性氧化石墨烯前驱体分散在超纯水中,采用实验室分散乳化机高速分散,以此来提高氧化石墨烯的层间距,最后通过低速离心得到单层氧化石墨烯。本发明工艺简单、快捷、安全、环保,有利于大规模工业生产,并且能够更有效地降低氧化石墨烯的层数;所制备的氧化石墨烯,可作为药物载体、复合材料的力学增强相,可制备高载药或高力学性能微型氧化石墨基复合材料;其还原产物石墨烯,可广泛用于制备储能材料、化学/生物传感器、导电材料等石墨烯基复合材料。
本发明涉及电催化水分解技术领域,具体为一种Co2P/CuP2/NF析氢析氧电催化剂制备方法,通过低温水热、恒电位电沉积以及低温磷化处理的方法得到的Co2P/CuP2/NF复合材料,所述水热是将CuO生长在泡沫镍上,获得Cu基前驱体;在CuO的表面恒电位电沉积Co物种,获得Cu‑Co复合材料前驱体,在氮气的气氛下进行低温磷化处理。本发明制备方法简单,通过以泡沫镍为基底进行低温水热、恒电位电沉积以及低温磷化处理得到Co2P/CuP2/NF复合材料,在碱性的条件下具有优异的电催化析氢和析氧性能,另外还可将其应用于锌水电池,且使用寿命较长。
本发明涉及电催化水分解技术领域,具体为一种自支撑Ni2P‑WOx析氢电催化剂制备方法,通过电沉积和低温磷化处理方法得到的Ni2P‑WOx复合材料,所述电沉积是将镍沉积在碳布上,获得镍基前驱体;将所述镍基前驱体再次进行电沉积,获得镍钨复合材料前驱体,在氮气的气氛下进行磷化处理。本发明制备方法简单,通过在碳布上进行简单的电沉积和低温磷化处理得到Ni2P‑WOx复合材料,在碱性和酸性的条件下都具有优异的电催化析氢性能,且使用寿命长。
本发明公开了一种2D MoS2‑2D PbS范德华异质结光电纳米材料的制备方法。以分散在溶剂中的MoS2超薄层为载体,醋酸铅和硫代乙酰胺分别为铅源和硫源,通过油酸、三辛基膦和三氯乙烷配体的作用使PbS在MoS2上定向生长成薄膜,从而得到2D MoS2‑2D PbS范德华异质结纳米复合材料。本发明操作简单,能够通过改变醋酸铅和硫代乙酰胺的浓度控制2D PbS层在MoS2超薄层上的附着量,复合材料的光电性能优于单独的2D MoS2材料,并且光电流随着2D PbS在复合材料中的含量的改变而发生变化,所制备的二维2D MoS2‑2D PbS范德华异质结材料在光电领域有良好的应用前景。
本发明公开了一种碳负载铋的铝基复合制氢材料。首先以一定的量之比,让络合剂和铋盐发生络合反应、生成金属铋的络合产物经热处理制得碳负载铋(C@Bi)的复合材料;然后,以一定质量比,将Al粉与C@Bi材料进行球磨制成。其制备方法包括以下步骤:1)C@Bi复合材料的制备;2)碳负载铋的铝基复合制氢材料的制备。该材料作为水解制氢材料的应用,即单位质量产氢量为1150‑1200 mL/g、产氢速率为3800‑5800 mL/g min及产氢率为94‑100%。具体原理为利用Bi元素与络合剂之间螯合作用,实现Bi原子在有机物内的均匀分布;保证了有机物在碳化形成碳材料后,能对Bi原子形成有效的包覆,避免了Bi原子之间的冷焊、团聚;并且C@Bi复合材料中的碳材料在水解过程中发挥电子传输的重要作用。
本发明公开了一种氧化石墨烯负载Ru‑CoP基气凝胶及其制备方法和应用。所述的氧化石墨烯负载Ru‑CoP基气凝胶是将粉末状Ru‑CoP@GO复合材料分散于水中,加入壳聚糖分散均匀后得到的溶液A与氧化石墨烯分散于水中得到的溶液B混匀,加入乙酸,经除气泡、静置后干燥而得;其中,粉末状Ru‑CoP@GO复合材料、壳聚糖和氧化石墨烯的重量比为1:3~10:0.04~0.2;所述粉末状Ru‑CoP@GO复合材料和壳聚糖在溶液A中的浓度分别为0.5~2wt%和3~10wt%,氧化石墨烯在溶液B中的浓度为0.1~0.5wt%。本发明所述气凝胶能够重复使用,对金属氢化物水解具有较高析氢速率且稳定性好。
本发明公开了一种以棉花碳纤维为基底原位生长钴镍氢氧化物的方法及应用。首先,将脱脂棉在氮气气氛下进行高温热处理,即得棉花基碳纤维材料,然后用乙醇将碳纤维润湿以备用。之后,将氯化镍、氯化钴和六次甲基四胺依次加入到蒸馏水中并搅拌溶解,待完全溶解后,加入经乙醇润湿的碳纤维并置于95 oC下反应6小时,待反应结束后冷却至常温,将样品用乙醇、蒸馏水多次洗涤后置于80 oC下干燥12小时,即得以棉花碳纤维为基底的钴镍氢氧化物复合材料,该复合材料能够用作超级电容器的电极材料。本发明制备方法操作简单,容易实现,且所制得的碳纤维基钴镍氢氧化物复合材料在作为超级电容器的电极材料时性能优异。
本发明提供镍钴层状双金属氢氧化物/石墨烯电催化剂的制备方法,属于电催化剂技术领域。本发明的方法包括以下步骤:通过超声波将石墨烯和硝酸钴均匀分散于甲醇溶剂中,得超声液;将超声液加入到二甲基咪唑的甲醇溶液中,搅匀后静置,然后离心、洗涤和干燥得ZIF‑67/石墨烯复合材料;将ZIF‑67/石墨烯复合材料和镍盐混合溶解于溶剂中,回流反应,然后离心分离,所得沉淀用无水乙醇洗涤,干燥得到纳米形貌的NiCo LDH/G复合材料。本发明的方法克服了现有合成方法设备要求高、需要高温高压、需要价格昂贵的表面活性剂的缺点,相比现有技术具有工艺简单、成本低廉、反应过程容易控制等优点,适用于工业化大规模的生产。
本发明涉及地板领域,尤其涉及一种环保组合式地板。包括皮革层、吸附层、板材层、防水材料层和加热层,所述皮革层、吸附层、防水材料层、板材层由上至下依次铺设,所述皮革层、吸附层、防水材料层和板材层依次固定连接,所述加热层夹设在所述板材层中部,所述吸附层采用活性炭树脂复合材料、竹炭树脂复合材料或吸附性白炭黑树脂复合材料。有效地降低地板本身的有害物质释放,另外一方面可以长期吸附室内装修过程中其他材料的有害物质释放,24小时室内装潢甲醛去除率可以达到80%以上,具有环保、高贵、生产工艺简便的特点。本发明的板材适用于地板、装饰贴面板以及装修用板,特别是适用于婴幼儿房间的装修。
本发明公开了一种耐腐蚀抗菌抗静电涂料及其制备方法。该涂料原料按重量份计包括如下组分:100重量份羟基丙烯酸酯乳液、1‑5重量份纳米复合材料和15‑30重量份亲水改性固化剂;所述纳米复合材料为三元纳米复合材料聚苯胺/铜/氧化锆,聚苯胺/铜/氧化锆是以二水合氯化铜为氧化剂,采用原位聚合法制得,其中苯胺、二水合氯化铜和氧化锆的质量比为1:5:0.1‑0.3。采用本发明所述技术方案制备得到的涂料应用到基材表面后,有以下效果:一是具有良好的抗菌效果;二是能起到良好的抗静电效果;三是具有良好的耐腐蚀效果;四是具有良好的漆膜性能。
本发明涉及电催化水分解技术领域,具体为一种CrP‑Re2P析氢析氧电催化剂制备方法,通过水热和简单滴定以及低温磷化处理的方法得到的CrP‑Re2P复合材料,所述水热是将铬长在泡沫镍上,获得铬基前驱体;将所述铬基前驱体进行滴铼物种,获得铬铼复合材料前驱体,在氮气的气氛下进行低温磷化处理。本发明制备方法简单,通过在泡沫镍上进行水热和简单滴定以及低温磷化处理得到CrP‑Re2P复合材料,在碱性的条件下具有优异的电催化析氢和析氧性能,且使用寿命长。
本发明公开了一种纳米复合湿度敏感材料、电阻式湿度传感器及其制备方法。所述的纳米复合湿度敏感材料是TiO2纳米粒子、聚合物纳米线、石墨烯的纳米复合材料。所述的电阻式湿度传感器包括上述的纳米复合湿度敏感材料,纳米复合湿度敏感材料固定于ITO玻璃片上。本发明所制备的电阻型湿度传感器采用原位化学聚合和溶胶凝胶相结合的方法制备二氧化钛纳米粒子、聚吡咯纳米线、石墨烯复合材料。二氧化钛纳米粒子具有良好的化学稳定性和独特的物理化学性质,将其负载到聚吡咯纳米线和石墨烯复合材料上,提高了在室温下湿度检测的稳定性和灵敏度,而且还具有工艺简单,应用范围广和制造成本低等优点。
本发明涉及3D打印技术领域,尤其涉及一种聚醚醚酮骨骼支架及其制备方法。通过在PLA和PEEK中分别加入HAP,来提高PEEK和PLA的界面粘结性,同时HAP可以增强细胞对支架的粘附和生长,具有良好的生物性能。通过双喷头分别打印PEEK‑HAP复合材料和PLA‑HAP‑WS复合材料的织构结构,借助刚挤出时材料仍处于高弹态的特性,使两种互不相容的材料融合在一起,同时以织构结构使两种复合材料之间物理互锁,在植入生物体后,由于二者相互锁扣,保证了刚植入时的力学性能;WS可以促进PLA降解,随着PLA的降解,细胞在HAP的诱导下沿着PLA降解后留下的孔隙中粘附并生长,使支架始终保持其刚植入时的力学性能。
本发明公开了Al‑含Bi化合物多孔块体制氢材料,即将原料Al粉和含Bi化合物进行球磨混合,再经放电等离子烧结制成;其含Bi化合物必须满足在球磨过程中不与Al粉反应和在放电等离子烧结过程会发生反应产生气体,使复合制氢材料形成多孔形貌。所述Bi化合物为Bi2O2CO3,Bi2O2CO3在放电等离子烧结过程会产生二氧化碳气体。其制备方法包括以下步骤:1)球磨过程;2)放电等离子烧结过程。作为水解制氢材料的应用,与水反应产氢量为1070‑1200 mL·g‑1,其产氢率可达93‑95%,该材料与水反应的表观活化能为29‑30 KJ·mol‑1。本发明具有以下优点:1、在放电等离子烧结过程中生成气体,复合材料中形成的孔洞增大了材料与水的接触面积;2、生成Bi和Bi2O3,提高复合材料的产氢性能。
本发明公开了一种超支化联苯液晶接枝剑麻微晶的制备方法及其应用。取剑麻微晶用硅烷偶联剂进行表面改性,将改性后剑麻微晶分散到N-甲基吡咯烷酮中,然后加入3, 5-二氨基苯甲酸,吡啶和亚磷酸三苯酯,在N2保护下于90~120℃反应3~5h,冷却到室温后倒入甲醇溶液中沉淀,抽滤,洗涤,置于真空干燥箱中烘至恒重,溶于N-甲基吡咯烷酮中,加入有机锡催化剂,在N2保护下加入甲苯-2, 4-二异氰酸酯于80~100℃下反应5~7h,然后加入4, 4′-二(β-羟乙氧基)联苯,反应10~12h后,冷却至室温,过滤,洗涤,在真空干燥箱中烘干至恒重,即制得超支化联苯液晶接枝剑麻微晶化合物,其应用于改性环氧树脂复合材料。本发明方法工艺简单,操作方便,所得产物易分散,取向性好,可显著提高复合材料的性能。
本发明公开了一种测定人绒毛膜促性腺激素的新方法。该方法以废弃生物质木瓜皮作为原料,采用水热法一步合成了蓝色高荧光的碳量子点,与银离子结合形成AgCQDs;同时通过在甲醇中二茂铁二羧酸分子的光分解和配位聚合来合成PS并通过静电吸引将带负电的AgCQDs和经PEI修饰变成带正电的PS结合,所得复合材料与rGO@Ag复合材料共同制备夹心型免疫传感器再用于HCG的检测。本发明所述方法灵敏度高且稳定性好。
中冶有色为您提供最新的广西桂林有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!