本发明公开了一种仿自然外观的复合材料,所述仿自然外观的复合材料依次为紧邻的树脂层(1)、表面面层(2)、增强层(3),所述树脂层(1)和增强层(3)将表面面层(2)包裹在树脂中,表面面层(2)包括增韧面层(22)和图案面层(21);本发明提出了一种仿自然外观的复合材料,所述仿自然外观的复合材料一方面,本发明所提供的仿自然外观的复合材料的面层为实木材料、仿木材料、仿石材、仿绿色植被等,其外观及外形多样化,可塑性强,美观大方,可有效和自然环境融为一体。另一方面,本发明所提供的复合材料还具有高强度、耐老化、防火、防水,韧性好的优点;还可做作为结构件进行配套使用。
本发明提供了一种由配位聚合物制备多级中空CoFe2O4材料及其复合材料的方法,它的合成步骤具体如下:首先利用钴盐和二茂铁双甲酸通过溶剂热法制备多级中空的二茂铁基配位聚合物(Co‑Fc‑Hcps);利用制得的Co‑Fc‑Hcps配位聚合物在空气氛围下高温煅烧的方法制备出多级中空的CoFe2O4材料;通过与盐酸多巴胺的搅拌和在氮气氛围下高温煅烧的技术得到CoFe2O4@C多级中空复合材料。本发明反应步骤操作简便而又环保,设备要求低。与现有所报道的相比,这种具有二级纳米棒状结构的CoFe2O4@C的中空球复合材料作为新型储能电极材料及磁性应用等方面具有广阔的应用前景。
本发明公开了一种纳米铁化合物/中间相碳微球复合材料及其制备方法,在该复合材料中,纳米铁化合物均匀分散覆载或内嵌于中间相碳微球,且纳米铁化合物质量分数为0.1%‑10%。制备方法为:将油溶性铁前驱体和硫助剂均匀分散于沥青中,在合适温度、压力、惰性气氛保护的条件下进行热聚合反应,产物分离后获得复合材料前驱体,进一步炭化制得纳米铁化合物/中间相碳微球复合材料。本发明优点在于油溶性铁前驱体原位形成均匀分散的纳米颗粒,促使形成优质的中间相碳微球复合材料,且可调控产品收率和粒径。本发明复合材料制得的锂离子电池负极材料具有良好的电化学特性。
本发明介绍了一种金属网板阻尼复合材料及其制造方法。通过将一层或多层金属丝网、板,用爆炸焊接方法或点焊方法与金属板连接,形成金属网复合板,即金属网板。再在这种金属网板的网孔中及表面添加各种阻尼材料。通过橡胶硫化、塑料刮涂再固化、塑料直接发泡、阻尼金属浇铸、金属网之间夹层玻璃布后进行爆炸焊接等方法,可以在网孔中及网板表面添加阻尼材料。这种金属网板阻尼复合材料既不影响材料的阻尼性能,又增加了这些材料本身的强度,也解决了材料与金属板的结合强度低的问题。可以延长复合材料使用寿命,扩大其应用范围。
高体积分数碳化硅颗粒增强铝基复合材料与可伐合金的软钎焊方法,它涉及异种材料的软钎焊方法。本发明解决了因SiCp/Al复合材料和可伐金属熔化焊焊接接头强度低难以焊成工程结构的问题。本发明方法是将高体积分数碳化硅颗粒增强铝基复合材料的表面化学镀Ni-P,组装待焊件后在钎剂及保护气氛下进行软钎焊焊接。本发明的钎料与可伐合金及镀镍层产生了互扩散,形成了致密的冶金结合。本发明方法连接碳化硅颗粒体积分数为55%的SiCp/Al与可伐合金4J29的接头剪切强度为225MPa。
本发明公开了一种电子铝箔复合材料及其制备的电子铝箔。该电子铝箔复合材料包括基体层,以及设置在基体层上下两表面的功能层;基体层中Al>99.995%,Fe<15ppm,Si<15ppm,Cu<10ppm,Zn<5ppm,Ga<5ppm,其他<5ppm;功能层中Al>99.98%,Fe 10~25ppm,Si 10~25ppm,Cu 20~60ppm,Zn<15ppm,Ga<15ppm,Pb 0~2ppm。该电子铝箔复合材料制备的电子铝箔由于基体层比较耐腐蚀,在对整个电子铝箔进行腐蚀增加比电容量时不用考虑由于基体层腐蚀造成的铝箔强度降低的问题。可以充分的调整基体层上下两面的功能层的腐蚀效果,保证腐蚀孔洞达到最佳化。所以,该复合材料电子铝箔既能够保证腐蚀的最佳化、又能够保证电子铝箔本身的强度及力学性能,有效解决了现有技术中电子铝箔腐蚀增加比电容量与电子铝箔本身强度之间的矛盾。
本实用新型的目的是提供一种强度高、重量轻的冷轧管钢芯分体式复合材料超高压灭活舱体,包括灭活舱本体,灭活舱本体内部设置圆柱形称为灭活腔的盲孔;灭活舱本体为冷轧钢管,冷轧钢管的一端固定底部堵头,构成外表面为圆柱形的灭活舱本体;底部堵头上设置与灭活腔连通的高压液体进出孔;冷轧钢管外周缠绕纤维复合材料。冷轧钢管外周缠绕纤维复合材料,为包卷纤维织物复合材料、缠绕纤维织物带复合材料或者缠绕纤维丝束复合材料。本实用新型的有益效果是:使用纤维复合材料缠绕灭活舱本体,同等强度下纤维复合材料质量轻、体积小,容易移动。
本发明公开了一种Al2O3/Mo复合材料的制备方法,属于复合材料制备技术领域。该方法是将铝盐与沉淀剂在水热下合成AlOOH纳米粒子,同时将钼酸铵水热合成MoO3纳米粒子,将两种悬浊液混合后充分搅拌,经过滤、洗涤、烘干后制成AlOOH和MoO3的复合粉体,再经500~58℃煅烧,将MoO3由亚稳态的六方结构转变为稳定的正交结构,AlOOH脱水转变为γ-Al2O3,通入H2两次还原,使MoO3还原成Mo粉,压制、烧结制得Al2O3/Mo复合材料。其中,Al2O3硬质陶瓷相具有硬度高、耐磨性好、化学稳定性强等特点,对钼具有很强的增强作用。Al2O3陶瓷颗粒弥散分布于钼基体之上,掺杂均匀,与钼基体之间是完全的冶金结合,能有效地阻止烧结时晶粒生长,具有细化晶粒的作用。
本发明是一种由炭/炭复合材料并经润滑改性后制作轴承保持架的方法。将无纬炭布和网胎制成圆筒状炭纤维编织体,经过化学气相沉积炉的裂解、沉积以及石墨化处理得到炭/炭纤维编织体,此后经过酚醛树脂的浸渍→炭化→粗车和钻削→精加工→机械抛光和超声波清洗得到炭/炭复合材料保持架,最后经镀膜后得到润滑改性的炭/炭复合材料保持架。炭/炭复合材料具有较小的密度,因此所制作的保持架就轻质以利减轻轴承整体的重量,提高其转速,也能提高主机使用效果。此外炭/炭复合材料保持架具有较高的拉伸强度,尤其是在300℃时其拉伸强度更高。导热系数高,热膨胀系数小,摩擦系数小,自润滑性能高,炭/炭复合材料保持架的尺寸稳定、可靠。
一种低温、高导热、电绝缘环氧树脂纳米复合材料制备工艺,采用填充法在环氧树脂基体中引入高导热率纳米陶瓷颗粒,通过对纳米陶瓷颗粒的表面改性解决了纳米颗粒易团聚的问题,并通过高速搅拌和超声波振荡等方法使得纳米陶瓷颗粒在环氧树脂中得到了均匀分散,解决了纳米陶瓷颗粒在树脂中的沉降问题。此外,由于纳米陶瓷颗粒对微裂纹的钉扎作用,复合材料体系的冲击韧性也得到了提高。同时所引入的纳米陶瓷颗粒也具有较高的体积电阻率,因此复合材料体系的体积电阻率仍然保持在较高的水平。
一种Z‑pin增强复合材料结构件的成型方法,包括:步骤一:制备Z‑pin(4),并将制成的Z‑pin(4)植入到预先准备的泡沫载体(3)中以制成含有Z‑pin(4)的泡沫预制体;步骤二:利用植入枪泡沫预制体中的Z‑pin(4)植入到筋条(1)与蒙皮(2)中,以使筋条(1)与蒙皮(2)连接从而形成复合材料结构件;以及步骤三:将复合材料结构件进行固化,以制成Z‑pin增强复合材料结构件。本发明的目的在于提供一种Z‑pin增强复合材料结构件的成型方法,以提高复合材料结构筋条和蒙皮连接界面的结构强度,延长复合材料结构件寿命。
本发明涉及一种碳纤维复合材料镗杆及其制备方法。该碳纤维复合材料镗杆,包括由内到外依次设置的杆芯、碳纤维复合材料层、金属套筒,所述碳纤维复合材料层包括铝合金基体和碳纤维,碳纤维在碳纤维复合材料中的体积分数为50~60%。本发明提供的碳纤维复合材料镗杆,采用碳纤维/铝合金复合材料为主体材料,其具有轻质、弹性模量大、能量损耗因子高的特点,而且与杆芯、金属套的结合力高,镗杆结构的整体性和稳定性好,可显著增强镗杆的刚度和抗震性能,提高镗杆的工作转速,延长镗杆的使用寿命。
本发明提供了聚偏氟乙烯复合材料表面的溴化处理方法,采用液相法结合气相法对聚偏氟乙烯复合材料表面进行溴化处理,溴化处理后大幅度改善聚偏氟乙烯复合材料的表面粗糙度,通过溴化氢浓度、及溴化处理时间可以控制复合材料表面的粗糙程度,同时通过气相法溴化处理可以促使聚偏氟乙烯复合材料接枝上溴键,促使聚偏氟乙烯链发生环化,提高复合材料的绝缘性,从而提高复合材料的耐击穿场强。
一种金修饰的磷掺杂氮化碳复合材料修饰二氧化钛光电极、其制备方法及应用,所述制备方法首先以FTO导电玻璃为衬底,通过水热合成法制得生长有TiO2纳米棒的FTO导电玻璃,然后制备P掺杂的C3N4复合材料、金修饰的P掺杂的C3N4复合材料,将金修饰的P掺杂的C3N4复合材料溶于水中,旋凃于生长有TiO2纳米棒的FTO导电玻璃上,即得P‑C3N4@Au修饰TiO2光电极(即金修饰的磷掺杂氮化碳复合材料修饰二氧化钛光电极)。本发明的P‑C3N4@Au修饰TiO2光电极不仅拓宽了光谱吸收范围、增强了紫外可见光的吸收强度,而且光电催化性质也得到了有效的改善。
本实用新型提供了一种薄片PLA复合材料压切机,包括箱体、安全门、放卷装置、输送辊组、换向辊组、成型装置及输出辊组,通过放卷装置实现薄片PLA复合材料的连续放卷动作,通过输送辊组将薄片PLA复合材料输送至成型装置,成型装置将薄片PLA复合材料切丝制成似断非断、藕断丝连、统一规格的条状,或者在薄片PLA复合材料上压制出条状压痕,或者将薄片PLA复合材料褶皱成锯齿形,使其满足低温不燃烧香烟的降温段的需要,成型后的薄片PLA复合材料通过输出辊组输出,为后续收卷工序提供条件。
本发明提供了一种钯/二氧化锡/石墨烯复合材料的制备方法及应用和气体传感器。所述制备方法包括以下步骤:将锡盐溶于去离子水中以形成锡盐溶液,搅拌并调节锡盐溶液的pH值至7~9,以生成白色沉淀,然后洗涤和干燥,得到白色晶体,将白色晶体研磨成粉末,然后焙烧制得二氧化锡纳米颗粒;向石墨烯溶液中加入二氧化锡纳米颗粒,超声分散均匀得到混合液,并经过离心分离、干燥和焙烧得到二氧化锡/石墨烯复合材料;将二氧化锡/石墨烯复合材料加入氯化钯溶液中,超声分散均匀得到混合液,并经过离心分离、干燥和焙烧得到钯/二氧化锡/石墨烯复合材料。本发明制备得到的复合材料具有在较低工作温度条件下对CO气体的高气敏传感性能。
本发明公开了一种提高PP与PA复合材料相容性的方法,步骤如下:向PP与PA复合材料中加入相容剂,采用熔融共混注塑得到PP/PA复合材料,其中混合体系中PP和PA的总重量分数为75?95%,相容剂的重量分数为5?25%,PA与PP的重量比为1 : 9?2 : 3,所述的相容剂为离子液体。采用离子液体为相容剂改性后的PP/PA复合材料的相容性得到改善,且提高了PP/PA复合材料的机械性能。
本发明公开了一种柔性压敏炭黑/硅橡胶复合材料及其制备方法,属于压敏复合材料技术领域。本发明的技术方案要点为:一种柔性压敏炭黑/硅橡胶复合材料,是由以下重量份的原料制备而成的:炭黑导电剂5-15份、硅橡胶基体100份、PVP-k30?2-5份、纳米级有机粘土DK4?2-5份和交联剂2-4份。本发明还公开了该柔性压敏炭黑/硅橡胶复合材料的制备方法。本发明制备的柔性压敏炭黑/硅橡胶复合材料灵敏度可变,填料价格低廉,工艺简单且材料性能稳定,可以用于灵敏度可调的力敏传感器领域。
本发明公开了一种石墨烯改性高热导率三维炭/炭复合材料的制备方法,以氧化石墨烯和PAN炭布为原料,通过浸渍的方法在碳纤维表面形成氧化石墨烯膜;在高温、氢气气氛中将氧化石墨烯膜还原成石墨烯,随后进行CVI致密化和石墨化处理,得到石墨烯改性的高热导率三维炭/炭复合材料。本发明工艺简单、操作方便,能够显著提高三维炭/炭复合材料的热导率和弯曲强度,实现三维高导热炭/炭复合材料的大尺寸、规模化制备;本发明还可以根据不同的使用要求,调整Z向穿刺纤维的种类、含量和纤维间距,来扩大三维炭/炭复合材料的使用领域,具有很好的市场价值和应用前景。
一种纳米金包覆银颗粒膜复合材料的制备方法,首先在聚酰亚胺基体表面制备银-锆合金膜,并使基体保持一定温度以使银原子在合金膜表面生长为银颗粒,然后在制备的银-锆合金膜表面纳米沉积金薄膜即制得产品。本发明采用磁控溅射双靶共沉积制备银合金薄膜及基体原位加热技术,实现了无需模板制备出纳米银薄膜/银颗粒复合结构材料,进而在已获得的纳米银薄膜/银颗粒复合结构表面溅射沉积金薄膜制备高性能、大比表面积纳米金薄膜包覆银颗粒膜复合材料,无需采用模板,成本低,绿色环保,易于在基体上无需模板制备出大面积、高性能纳米金薄膜包覆银颗粒膜复合材料,较之纯金薄膜比表面积可增大20%以上。
一种纳米银包覆铜颗粒膜复合材料的制备方法,首先在聚酰亚胺基体表面制备铜-铬合金膜,并使基体保持在一定温度以使铜原子在合金膜表面生长为铜颗粒,然后在制备的铜-铬合金膜表面沉积纳米银薄膜即制得产品。本发明采用磁控溅射双靶共沉积制备铜合金薄膜及基体原位加热技术,实现了无需模板制备出纳米铜薄膜/铜颗粒复合结构材料,进而在已获得的纳米铜薄膜/铜颗粒表面溅射沉积银薄膜制备高性能纳米银薄膜包覆铜颗粒膜复合材料,较之纯银薄膜比表面积可增大20%以上,成本低,绿色环保,易于在基体上无需模板制备出大面积、高性能纳米银薄膜包覆铜颗粒膜复合材料。
本发明公开了新型颗粒增强铝基复合材料的制备工艺及其专用设备。该制备方法的熔化和混合过程在密闭的连体的设备中进行,将铝基体合金由熔化池的加料口加入,铝基体合金熔化后,打开熔化池底部的阀门,熔化的液态铝基体合金直接流入混合池,当混合池液位达到规定高度后关闭阀门,从混合池顶部的加料口加入经预处理的SIC,加料时采用铝壳为包裹材料的加料棒,随着加料棒铝壳的熔化SIC熔入铝基体合金中,然后通过出料泵将料送至模具中,直接制成坯料或产品。本发明将熔化和混合二者有效结合,简化了熔化池和混合池系统,结构简单,控制简单,合理降低成本,产品中碳化硅颗粒在铝基复合材料中的含量稳定,并且分布均匀,提高铝基复合材料的整体性能。
本发明公开了一种制氢AL基合金复合材料及其制备和使用方法,该AL基合金复合材料由AL基合金与填充物所组成;所述AL基合金采用AL与SN、ZN、BI、GA、IN、MG、PB元素所组成的二元或多元合金,其中,AL含量3WT%到95WT%,余量为SN、ZN、BI、GA、IN、MG、PB中的一种或多种;所述填充物采用无机纳米管、微米管、纳米线、纳米纤维、无机颗粒的一种或多种,该AL基合金复合材料中所述填充物的含量为1-90WT%;本发明能够提高制氢效率,且易于存储运输。
一种基于细观建模的植物纤维/聚乳酸复合材料湿热老化性能多尺度预测方法,包括以下步骤:1)对植物纤维/聚乳酸复合材料进行老化试验2)建立不同温度下的各老化材料吸水率随老化时间变化规律函数;3)建立不同温度下的各组分强度随老化时间变化规律函数;4)分别建立各组分强度与吸水率、温度之间关系函数;5)复合材料细观RVE模型建立;6)环境退化因子定义与引入;7)复合材料弹性性能计算;8)复合材料失效强度计算;9)宏观复合材料湿热老化性能预测。本发明充分考虑多尺度多因素的耦合作用,为绿色复合材料在实际应用提供老化后力学性能的预测模型及方法。
本发明提供一种一体化成型复合材料蒙皮与骨架的连接方法,包括如下步骤:(1)根据骨架的结构加工模具;(2)在模具表面铺设增强材料,对模具进行密封,根据工艺要求固化成型U型连接件;(3)对所述U型连接件进行脱模加工;(4)将所述U型连接件内腔胶结包裹在所述骨架上;(5)将所述U型连接件的外侧与复合材料蒙皮一体成型。将现有技术中的金属骨架‑复合材料蒙皮界面转化为U型连接件‑复合材料蒙皮界面,且金属骨架与U型连接件胶结面积远远大于现有技术中的金属骨架与复合材料蒙皮胶结面积,进一步增强了胶结强度。大幅提高骨架与复合材料间的连接稳定性,有效解决了“复合材料蒙皮‑金属骨架”界面强度弱、结构稳定性差的问题。
本发明属于石墨负极材料领域,具体涉及一种长寿命高功率石墨复合材料的制备方法。该石墨复合材料的制备方法包括以下步骤:1)在表面生长有碳纳米管的导电基体上,采用电化学沉积法在碳纳米管上制备聚苯胺,去除导电基体,得到碳纳米管/聚苯胺复合材料;2)将碳纳米管/聚苯胺复合材料、水溶性有机碳源、水在酸催化剂的作用下进行水热反应,过滤,得到固态碳纳米管/聚苯胺/水热碳复合材料;3)将硬碳包覆的石墨、固态碳纳米管/聚苯胺/水热碳复合材料、酸溶液混合均匀后喷雾干燥。该方法制备的石墨复合材料,内核为石墨,外壳为双层结构,可有效提升材料的循环及功率性能。
一种用于SiCp/Al复合材料硬钎焊的膏状钎料及其制备方法和使用方法,它涉及一种用于SiCp/Al复合材料硬钎焊的钎料及其制备方法和使用方法。本发明的目的是要解决现有带状带状或者箔状钎料不利于钎焊过程的自动化,不适宜焊接不规则的、小型的或几何形状复杂的零件的问题。一种用于SiCp/Al复合材料硬钎焊的膏状钎料由合金钎料粉、钎剂和粘结剂混合而成;制备方法:一、制备合金钎料粉;二、制备钎剂;三、制备粘结剂;四、混合,即得到用于SiCp/Al复合材料硬钎焊的膏状钎料;使用方法:采用涂覆式布料或针管式布料,然后进行真空加热处理,即完成焊接。本发明主要用于制备用于SiCp/Al复合材料硬钎焊的膏状钎料。
本发明采用有机硅转化制备陶瓷基体立方氮化硼复合材料的方法,把聚硅氧烷复合物,硅铝复合物溶胶溶液、聚硅氧烷固化交联剂、立方氮化硼、刚玉和短切玻璃纤维填料,按照设定的质量比例一起混合,经搅拌、注入模具凝胶化和固化、脱模、烧结成型、后处理修整,获得陶瓷基体立方氮化硼复合材料。本发明采用有机硅作为前驱体,辅以硅铝复合物溶胶溶液,便于实现异形件注模预成型,复合材料中陶瓷基体对立方氮化硼磨料的把持力高,制备得到的陶瓷基体立方氮化硼复合材料,可以应用于立方氮化硼工具磨具材料,或其他耐高温及耐磨功能材料。此外,加入的增强短切玻璃纤维更容易均匀分布在复合材料基体中,与基体材料化学相溶性好,增强效果明显。
本发明属于工业镀铝领域,公开一种陶瓷蒸发舟用复合材料的无压烧结制备方法。将PCS、DVB、二甲苯混合,配制成均匀溶液;加入硅、钛复合粉和TiB2、BN、AlN复合粉,球磨混合,90~110℃加热搅拌直至浆料粘稠不能搅拌为止;将所得浆料烘干,造粒过筛,压制成型,得到坯体;用碳、钼复合粉包裹坯体;在氮气气氛中,1600~1750℃烧结0.5~1.5 h,即得陶瓷蒸发舟用复合材料。本发明采用无压烧结工艺,制备出的陶瓷蒸发舟用复合材料具有净尺寸成型的特点,可以经少量加工或不加工就能制作成陶瓷蒸发舟,可大幅降低复合材料的烧结成本、节约加工成本,显著降低陶瓷蒸发舟的生产成本,而无压烧结非常适用于工业化、大规模、连续生产,可以轻易满足工业需求。
本发明介绍了一种结构型高阻尼纤维增强复合材料,包括柔性阻尼复合材料中间层、刚性复合材料外层,均为增强纤维和树脂基体复合,增强纤维采用玄武岩纤维、高强或高模玻璃纤维的平纹、缎纹、斜纹织物;中间层的树脂基体采用柔性环氧树脂和普通环氧树脂按一定比例的配合物,外层树脂基体采用普通环氧树脂;柔性环氧树脂环氧值0.2~0.4,用橡胶弹性体、热塑性树脂、有机硅、热致液晶聚合物增韧改性。本发明克服了采用树脂阻尼改性所带来的阻尼复合材料力学性能下降显著的缺点,在保留普通纤维增强复合材料力学性能的基础上,材料的阻尼损耗因子达到0.05以上;原材料性价比高,拓宽了结构型高阻尼纤维增强复合材料的应用领域。
中冶有色为您提供最新的河南有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!