本发明涉及一种以TiO2纳米管复合材料为定向负载支架和示踪标记物的电化学免疫传感器的构建方法,其分别通过水热法、化学氧化聚合法以及柠檬酸三钠还原法最终合成出GNPs-PANI-TNT复合材料,将其分散于壳聚糖溶液中并滴加在电极表面。以BS3为双氨基交联剂将蛋白G′共价结合在壳聚糖表面,用于定向负载捕获抗体(Ab1)。BS3还被用于结合辣根过氧化物酶(HRP)和信号抗体(Ab2)以制备示踪标记物。采用本发明方法制备所得的电化学免疫传感器能够快速的测定α-甲胎蛋白AFP,且灵敏度较高、线性范围较大、检测限较低。
本发明介绍了一种复层为铜及铜合金、铝及铝合金、钛及钛合金等贵金属复合材料爆炸焊接专用炸药及其制造方法。该炸药含有以下质量份的组分:硝酸铵64~75%,复合油相2~3.5%,木粉2.5~3.5%,食盐15~30%,空心玻璃微球1.5~3.0%。先将硝酸铵进行膨化处理,再将膨化硝酸铵在轮碾机内与复合油相、木粉、食盐、空心玻璃微球混合,最后在40℃以下出料即得到产品。本发明炸药组分中不含TNT,爆炸性能稳定,原材料成本低,制造方法简单,适合于工业化生产,爆炸焊接的贵金属复合材料界面结合率和结合强度高。
本发明涉及电子材料技术领域,具体公开了一种氧化铝粒子弥散强化铜复合材料及其制备方法。所述氧化铝粒子弥散强化铜复合材料的化学成分组成为:重量百分含量为0.05~1.5%的α-Al2O3,重量百分含量为0.38~0.94%的γ-Al2O3,余量的铜。本发明提供的氧化铝粒子弥散强化铜复合材料的制备方法具有内氧化时间短、成本低、效率高的优点,制得的氧化铝粒子弥散强化铜复合材料具有高强度、高导电性、高抗软化温度、高的高温强度,可满足微电子行业和电子信息行业对高导高强耐高温铜合金的要求,在机械工业、国防工业和电子信息产业具有广泛应用。
本发明公开了一种水热法合成1T相二硫化钼/碳纤维布纳米复合材料的方法,分别利用碳纤维布、钼源、硫源和还原剂作为反应物,通过水热反应合成1T相二硫化钼/碳纤维布纳米复合材料。该方法原料价格低廉,操作方法简单,经水热反应可一步制备出1T相二硫化钼/碳纤维布纳米复合材料。制备方法简单,反应条件温和,产物稳定不易发生相变等特点都使本发明具有极为广阔的应用前景。
本发明公开了一种球形二氧化钛包裹硫化锂/硫复合材料的制备方法,属于硫化锂功能材料的合成技术领域。本发明的技术方案要点为:将1‑12g干燥后的硫粉在水浴条件下溶于100mL醇类有机溶剂中得到溶液A;待水浴温度升高至55‑60℃时向液A中加入0.655g氢氧化锂,升高水浴温度至80℃并保持10min得到溶液B;向溶液B中加入钛酸四丁酯并进行反应得到溶液C,将溶液C置于旋转蒸发器中旋蒸出溶剂即得球形二氧化钛包裹硫化锂/硫复合材料。本发明制得的球形二氧化钛包裹硫化锂/硫复合材料易于储存,而且二氧化钛包裹能够有效阻止放电产物多硫化物的溶解并缓解体积膨胀,进而提高材料的电化学性能。
一种铝基复合材料的化学镀镍方法,它涉及一种铝基复合材料的化学镀镍方法。本发明的目的是要解决现有的碳化硅颗粒增强铝基复合材料和高硅铝材料的表面化学镀镍技术存在实施成本高,应用范围较窄的问题。化学镀镍方法;将化学镀液的pH值调至9~11,在化学镀液温度为70~90℃持续镀覆,即完成化学镀镍;所述的化学镀液的溶剂为去离子水,溶质为NiSO4·6H2O、NaH2PO2·H2O、C6H5Na3O7·2H2O和NH4Cl,优点:1、镀镍层外观良好,内部组织致密,结合力强;2、工艺简单,可重复性强,镀覆时间短,不需要外加直流电源;3、镀镍成本低;4、不对焊缝、玻璃构件等造成腐蚀。本发明主要用于化学镀镍。
本发明公开一种用于防弹装甲板夹层复合材料的制备方法。将苎麻纤维在模具型腔中铺展均匀;制备硅溶胶;将模具型腔置于‑20~0℃环境中,然后将硅溶胶加到模具型腔中,浸渍处理苎麻纤维;取出浸渍处理后的苎麻纤维,凝胶‑老化处理;在超低温冰箱中冷冻,然后置于冷冻干燥机的干燥室中抽真空干燥处理,得到苎麻纤维增强气凝胶毡A;将环氧树脂、固化剂、环氧树脂活性稀释剂、空心玻璃微珠配制,得到环氧树脂/空心玻璃微珠浆液B;在苎麻纤维增强气凝胶毡A的上下两面先分别均匀涂覆环氧树脂/空心玻璃微珠浆液B,接着再在两面分别覆盖玻璃纤维布增强环氧树脂片,得到夹层复合材料C,真空固化。本发明制备的复合材料具有较好的韧性及较大的抗压强度。
本发明公开了一种碳包覆氟掺杂改性的磷酸铁锂(LiFePO4‑xFx/C)正极复合材料的制备方法,以氟化锂、醋酸亚铁、磷酸氢铵、氟化锂为原料,加入无水乙醇和无水葡萄糖,进行超声处理后干燥;干燥产物一次烧结后研磨,然后进行二次烧结,得到LiFePO4‑xFx/C正极复合材料,该复合材料在0.1C下循环30次后,比容量保持率大于90%。
本发明公开了一种铜铝复合材料及其制备方法,属于金属加工技术领域。本发明铜铝复合材料,采用电弧喷涂,喷涂电压为30~35V,喷涂距离为100~150mm,送丝速度为3~4m/min,电流为120~150A,压缩气体压力为0.65~0.75MPa,压缩气体流量为1.6~2.0m3/min,在惰性气体保护气氛中向铝合金基体表面喷涂铜形成铜涂层,铝合金基体表面喷涂的铜涂层不被氧化,且均匀致密,呈紫红色光亮,并且与基体结合强度高,导电性好,可用于高压电器产品的制备。本发明铜铝复合材料的制备方法,采用电弧喷涂的方式喷涂铜涂层,相比传统的电镀和化学镀的方法,对环境无污染,操作简便,快速省时,节约成本。
本发明公开了一种高性能聚碳酸酯复合材料及其制备方法及应用,所述复合材料按照质量百分比计,由以下原料组成:聚碳酸酯77.8~84.7%、壳聚糖/粘胶纤维7~11%、丁基橡胶6~8%、2, 6?二叔丁基?4?甲基苯酚0.5~0.8%、阻燃剂0.2~0.3%、抗静电剂1.6~2.1%;阻燃剂由聚硅硼氧烷、磷酸三苯酯混合而成;抗静电剂由聚氧乙烯硬脂酸酯、脂肪醇聚醚酰胺混合而成。本发明复合材料具有好的力学性能、抗菌性能、阻燃性能和抗静电性能,适合用作汽车内饰用材料。
本发明提供了一种阻燃耐高温尼龙复合材料,它由包括以下重量份的组分制成:尼龙盐95~105份、羧基化碳纳米管2~10份、有机纳米蒙脱土2~6份、膨胀石墨3~8份、聚硅硼氧硅烷2~6份、纳米二氧化钛1~4份、滑石粉1~3份、硅灰石2~5份、封端剂0.2~1份、催化剂0.1~0.6份、去离子水40~70份。本发明还提供一种上述阻燃耐高温尼龙复合材料的制备方法。本发明提供的上述阻燃耐高温尼龙复合材料具有比较好的阻燃、耐高温以及力学性能。
本发明属于纳米复合材料技术领域,具体涉及一种含有纳米钻石烯的水泥基复合材料及其制备方法,该含有纳米钻石烯的水泥基复合材料,由以下重量份数的原料组成:水泥1‑2份,钢纤维0.003‑0.05份,纳米钻石烯0.02‑0.08份,水0.2‑0.6份,掺合料0.25‑0.45份,高性能减水剂0.001‑0.003份,石英砂0.4‑0.5份,碳纤维0.006‑0.07份,本发明凝结快,抗压强度和抗弯强度好。
本发明属于陶瓷材料制备技术领域,具体涉及一种动态压力闪烧制备晶须增韧陶瓷基复合材料的方法。该方法是将晶须和陶瓷粉体制成陶瓷混合粉体,再压制成陶瓷坯体,陶瓷坯体闪烧进行的同时对陶瓷坯体的上下两端施加振荡压力,实现动态力辅助的闪烧锻压烧结,最后冷却后得到晶须增韧陶瓷基复合材料。本发明的烧结过程中,采用了热场、动态力场和电场的耦合,在耦合作用下,实现了烧结温度降低,加快了陶瓷致密化速率,最终制备出晶粒尺寸小、内部缺陷少、晶须结构稳定且致密度高的晶须增韧陶瓷基复合材料。
本发明提供了一种纳米复合材料PMMA@Fe‑N‑C制备方法,该方法为:制备Fe‑N‑C载体,然后分散于PMMA分散液中经超声、搅拌后,得到纳米复合材料PMMA@Fe‑N‑C,还提供了应用,用于去除制备金刚石的原料中的氧气,将PMMA均匀分散于Fe‑N‑C载体的表面和内部的空隙中,得到纳米复合材料PMMA@Fe‑N‑C,通过Fe‑N‑C载体的吸附负载,增加了PMMA与氧气的接触机会,提高去除氧气的效果。
本发明公开了一种羟基功能化改性提升Fe0/Fe3O4复合材料对废水中Cr(VI)去除性能的方法,羟基功能化改性的具体过程为:将微米级零价铁和微米级四氧化三铁按照质量比1:0.05的比例混合均匀,再加入氧化锆磨球通过变频微电脑行星式球磨机进行机械球磨得到Fe0/Fe3O4复合材料,将Fe0/Fe3O4复合材料与无水乙醇在室温下通过机械搅拌进行反应,反应完全后用氮气吹干得到羟基功能化改性Fe0/Fe3O4复合材料,并于氮气氛围下保存。本发明中经过羟基功能化改性后制得的Fe0/Fe3O4复合材料对水中Cr(VI)的去除有着显著的效果,且去除率有明显提高,改性后增大其在水中的溶解度,减弱了球磨材料的疏水性,使其在反应中更好的发挥其氧化还原性。
本发明公开了一种碳包覆硅纳米片制备方法及碳包覆硅纳米片,通过将0.1‑1g碳源加入5‑20mL水中搅拌并超声分散10‑30min;加入0.1‑1g D50粒径10‑500nm的硅粉超声分散10‑30min;100‑200℃水热反应10‑24h后离心、真空干燥得碳包覆硅纳米片。该碳包覆硅纳米片由硅纳米片及包覆在周围的碳层组成。本发明公开了用上述碳包覆硅纳米片制备的硅基复合材料及制备方法,通过将碳包覆硅纳米片、碳材料、碳源按质量比5‑12%:78‑85%:10%混合球磨,以3‑10℃/min升温至500‑1000℃煅烧5‑12h得硅基复合材料。该硅基复合材料包括碳包覆硅纳米片、碳材料和包覆碳层。本发明的碳包覆硅纳米片和硅基复合材料的碳包覆层缓冲了硅的体积膨胀,增强了导电性,硅基复合材料的双包覆碳层进一步抑制硅的膨胀,提高了首次充放电效率和循环容量保持率。
本发明公布了一种阻燃抗静电型聚酰胺复合材料及其制备方法,该聚酰胺复合材料按重量比,由聚酰胺基体60‑70份、阻燃母粒8‑13份、导电剂5‑8份,填料10‑15份、增韧相容剂13‑18份、分散剂1‑3份、抗氧化剂0.5‑1份和辅料1‑3份组成。再者,本发明的聚酰胺复合材料在具备优异阻燃性能的同时兼具抗静电特性。通过阻燃母粒、导电剂、填料以及辅料与聚酰胺基体的共混,利用几种材料间相互协同作用,在保证聚酰胺复合材料兼具阻燃和抗静电特性,同时又满足聚酰胺材料正常使用时的机械性能,并且本发明的聚酰胺复合材料制备方法简单。
本发明公开了一种可提高铸钢件耐磨耐热性能的复合材料及生产工艺,所述复合材料包含有硅质砂、铝矾土、蓝晶石、锆石砂、镁砂和橄榄石,且硅质砂、铝矾土、蓝晶石、锆石砂、镁砂和橄榄石的粒度均在0.212mm‑‑10mm之间。该可提高铸钢件耐磨耐热性能的复合材料及生产工艺,铸钢中加入耐磨质点,提高铸件的耐磨性,产品表面用复合材料时,整个产品的韧性也得到提高,无需在加工过程中额外添加热处理操作,相比较传统的复合材料以及生产工艺,存在着生产成本更低,有利于大规模推广的优点,较大程度的缩短了生产周期,铸件表面不易粘接残砂,由于铁水接触砂型,降温速度较快,促进了白口铁化使产品硬度进一步提高。同时减少了铁水用量,降低了生产成本。
本发明公开了一种利用旋涂法制备黄原胶网络结构辅助均匀分散三角形纳米银复合材料的方法,属于纳米材料技术领域。该复合材料中含有黄原胶和三角形纳米银,利用生物相容性高的黄原胶为载体,提高了三角形纳米银的分散性和复合材料的均匀性,不但提高了复合材料的抗菌性和生物相容性,而且能够更好地应用于拉曼增强研究中,极大地节约了研究人员的时间成本。本发明黄原胶网络结构均匀分散的三角形银纳米复合材料的制备方法,在双氧水存在的条件下制备的三角形纳米银颗粒尺寸高度均一,且该方法制备的三角形纳米银颗粒与通常制备的三角形纳米银表现出不同的性质,与黄原胶混合后均匀分布在具有网状结构的黄原胶上,分散性好。
本发明提供了一种微波原位制备聚乳酸/坚果壳颗粒复合材料的方法,涉及聚乳酸复合材料的制备方法。本发明解决了现有技术中采用丙交酯与改性坚果壳颗粒原位制备聚乳酸/坚果壳颗粒复合材料方法存在反应时间长、抽真空造成能耗高的问题。本发明在聚合过程中反应时间比较短、无需抽真空、能耗大幅度降低。按照如下步骤制备复合材料:(1)将丙交酯和改性坚果壳颗粒加入到容器中,超声混合均匀,改性坚果颗粒的加入重量为丙交酯重量的0.1%~2%;(2)向步骤(1)超声得到的混合物中加入催化剂,搅拌10~20分钟,微波功率200~400W,聚合10~40分钟;得到聚乳酸/坚果壳颗粒复合材料。
本发明公开了一种用于高速列车受电弓的碳铜复合材料及其制备方法,所述碳铜复合材料包括低密度炭炭复合材料,所述低密度炭炭复合材料化学气相沉积有氮化硼界面层,碳碳复合材料、氮化硼界面层气相渗钛形成碳化钛和氮化钛的混合界面层,之后再气相渗铜形成铜相;氮化硼界面层有良好的力学性能且氮化硼界面层抗氧化能力强,可以有效的增强制品的抗氧化能力;TiN较TiC抗氧化能力强,TiC硬度较TiN高,TiN和TiC混合界面层结合了二者的优点,有利于提高材料的综合性能;TiC和TiN混合界面层与铜相润湿性较好,通过界面层以解决碳铜结合性差的问题。
本发明提供了一种微米棒状P4O6(Ni(CO)3)4基复合材料、制备方法及应用,本发明以六水合硝酸镍,六水合硝酸钴、红磷、尿素,以及AC或r‑GO或CNTs中的至少一种为反应物,无需其他表面活性剂或模板条件下制备了崭新的超级电容器用微米棒状P/N/N/C复合材料。碳材料AC或r‑GO或CNTs具有较大的比表面积和良好的电子电导率,它的引入不会显著降低P/N/N复合材料的放电容量,且薄层AC或r‑GO或CNTs包覆在P/N/N复合材料颗粒表面或存在复合材料颗粒之间,都有利于改善复合材料颗粒之间的导电性,从而显著提高其倍率性能。
本发明涉及一种cBN/Al复合材料的制备方法,属于铝基复合材料领域。该cBN/Al复合材料的制备方法包括以下步骤:1)将cBN粉和Al粉高能球磨混合,得到混合粉;2)将混合粉压制成块体,然后在保护气氛下将块体在1000‑1300℃进行无压烧结,即得。本发明的cBN/Al复合材料的制备方法,通过高能球磨和烧结温度的控制,实现在无压条件下的烧结,烧结过程中实现了cBN与Al的有效结合,cBN/Al复合材料内部致密均匀,无内部缺陷;与传统铝合金材料相比,cBN/Al复合材料的硬度和耐磨性有了极大的提升;同时该方法生产工艺简单,成本低廉,易实现产业化生产。
本发明涉及一种基于FTO表面的卤氧化铋/铋酸钙复合材料制备方法,具体为:1)以硝酸铋、硝酸钙为原料,以二乙烯三胺五乙酸、乙二胺四乙酸为形貌控制剂,通过与氨水溶液交叉旋涂,将前驱体分散在FTO表面,再经过煅烧得到片状CaBi6O10材料;2)采用旋涂将硝酸铋水溶液分散在CaBi6O10材料表面,通过低温保温反应后,将材料置于10‑40mmol/L KX溶液(X=Cl,Br,I)中,160‑180℃反应8‑15小时,经洗涤、干燥即得BiOX/CaBi6O10复合材料。该复合材料成本低廉、光催化污染物活性高、结构稳定、循环稳定性良好,而且其对于多种混合污染物也表现出良好的光催化降解能力,在生活废水处理和工业废水处理等领域有着广泛的应用前景。
本发明公开了一种阻燃剂,以下重量份数的组分组成:聚磷酸铵4~16份、季戊四醇4~16份、三聚氰胺4~16份、氢氧化铝4~10份、碳纳米管0.1份;同时还公开了使用该阻燃剂的超高分子量聚乙烯阻燃复合材料及其制备方法。本发明的阻燃剂在超高分子量聚乙烯阻燃复合材料中呈网络状非均匀分布,添加量小,在保证复合材料具有良好的力学性能的同时,具有良好的阻燃性能。本发明的超高分子量聚乙烯阻燃复合材料的制备方法,采用模压法制备阻燃型超高分子量聚乙烯复合材料,所得超高分子量聚乙烯阻燃复合材料同时具有较好的力学性能和阻燃性能,工艺简单,操作方便,适合大规模工业化生产。
本发明涉及含孔洞的导电型纳米复合材料领域,公开了一种导电高分子/高岭土纳米管(HNTs)复合材料及其制备方法。本发明所得复合材料由导电高分子PEDOT:PSS和不导电的高岭土纳米管进行复合得到,其中高岭土纳米管质量为复合材料总质量的43.5-79.4%。本发明原料易得,操作简单,复合材料电导率高,比表面积大,既有有机和无机材料的不同优点,又有纳米材料的特性,充分实现了优势互补。PEDOT:PSS/高岭土纳米管复合材料在温差电、电容器、电磁波等方面有极好的应用前景。
剑麻微纤维/明胶复合材料,属于材料技术领域,主要由20-90重量份的明胶和10-80重量份的剑麻微纤维制成。所述剑麻微纤维的直径为3-20μm、长径比为1-150;所述明胶可依次用增塑剂和交联剂进行改性。本发明利用经增塑、交联改性后的明胶作为聚合物基体,利用从天然剑麻纤维中拆分出的微米级剑麻微纤维作为增强体,制备出的新型复合材料价格低廉、性能优异、对环境友好,是一种优良的可生物降解材料。该复合材料被废弃后,其中的明胶和剑麻纤维均可在自然环境中被微生物完全降解,回归自然,符合低碳循环经济发展的需要,对缓解资源、能源和环境危机将起到积极的推动作用。
本发明公开了一种锂离子电池用石墨/LiAlO2/石墨烯复合材料及其制备方法,其中制备方法为,首先将氢氧化铝溶液与氢氧化钠和碳酸锂反应,得到含有偏铝酸锂的溶液,再加入石墨均匀分散,蒸除水分得到石墨/LiAlO2复合粉体,然后加入镍催化剂并通入碳源气体生长石墨烯,反应后冷却得到石墨/LiAlO2/石墨烯复合材料。本发明通过材料的表面改性制得的锂离子电池用石墨/LiAlO2/石墨烯复合材料,既保持了石墨作为负极材料所具有的特性,又同时利用了LiAlO2在锂离子电池充放电过程中的离子导电性和石墨烯的电子导电性,提高了锂离子电池整体的导电性,可在大倍率充放电情况下改善了锂离子电池负极材料表面析锂情况,从而降低了锂离子电池析锂产生的枝晶刺破隔膜的机率,提高了锂离子电池的安全性。
本实用新型公开了一种合金复合材料的切割装置,包括底座,底座的顶端固定设有若干夹紧装置,底座的两侧均开设有滑轨槽,底座通过滑轨槽与支撑杆底部设有的卡合头卡合连接,支撑杆的内部设有气缸,气缸的伸缩端固定连接有伸缩杆,底座两侧的两根伸缩杆的顶端固定连接有横梁,横梁的底部设有电机,电机的输出轴连接有切割片。本实用新型通过设置夹紧装置来固定合金复合材料,使得合金复合材料固定更加稳定;通过设置滑轨使得切割片可调整位置,可根据需求调整合金复合材料切割长度;通过气缸控制切割片的升降,机械化操控,避免切割面不整齐。
本发明公开了一种PTFE‑空心玻璃微球复合材料及其制备方法和应用。PTFE‑空心玻璃微球复合材料的制备方法的步骤为:(1)将PTFE颗粒与空心玻璃微球按一定质量比混合,得到干混料;(2)向步骤(1)的干混料中加入润滑剂,搅拌使混合均匀,得到湿混料;(3)将步骤(2)制备的湿混料压制成片状,即得PTFE‑空心玻璃微球复合材料。本发明制备的PTFE‑空心玻璃微球复合材料性能均一,介电常数低,介电损耗低,适用于5G领域印刷电路板的制备。
中冶有色为您提供最新的河南有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!