本发明公开了一种含处理过含砷废水石灰的混凝土及其制备方法,该混凝土为用处理过含砷废水的石灰取代沙子封装在混凝土中,它由如下质量份的组分:普通硅酸盐水泥20-30份,石灰60-90份,减水剂1-3份和自来水10-15份混合制备而得。本发明的混凝土含有处理过含砷废水的石灰,将处理过含砷废水的石灰取代沙子封装在混凝土中,与传统的将处理过含砷废水的石灰作为固废进行垃圾填埋,具有处理成本低,实现了废物的再生利用,并有效的防止了处理过含砷废水的石灰污染地下水等优点,并且本发明的混凝土抗压强度满足C30,TCLP也满足要求,因此可广泛应用到建筑领域中。?
本发明公开了铋酸钠在快速降解有机染料废水中的应用及降解方法。首先将 有机染料废水格栅除杂和静置沉淀,用pH值调节为7~10;而后废水引入反应容 器,加入NaBiO3,可见光照射,在搅拌的作用下反应,废水处理后排出。当有机 废水浓度超过130mg/L时应对其加以稀释。所选用的铋酸钠为商用品,可直接购 得,从经济上的考虑投加浓度为0.1~2g/L,当投加浓度超过3g/L过多的固体颗粒 会散射光照,使光解效率降低。本发明用于处理染料废水的适用性强,常温 下即可进行。所发明的催化氧化剂具有很强的氧化能力,能氧化大多数有机染料, 并且降解速度很快,TOC下降显著。催化剂成本低廉,易于大规模生产使用。
本发明公开了一种处理电镀废水中有机物的方法,属于污水处理技术领域。本发明通过制备一种污水处理药剂,投入待处理的电镀废水中,同时加入沸石高速搅拌,从而去除电镀废水中有机物。本实例证明,本发明不仅方法简单易行,没有二次污染问题,而且使得电镀废水中的微生物可以生存,有机物去除率得到了显著的提高,去除率高达90%以上。
本发明涉及表面活性催化剂处理冶金废水中高浓度氨氮装置,属于污水处理领域,本发明装置由药液箱(1)、管道混合器(2)、旋转喷射管(3)、布气装置(4)、鼓风机(5)、脱氮塔(6)、循环水溢流装置(7)、重金属催化剂(8)、排气口(9)、废水出口(10)和原水入口(11)构成;本发明装置所用的旋转喷射管身上布满喷射孔,呈螺旋式上疏下密分布,使废水与空气充分混合反应,操作简单可行,运营成本低,去除率高,经本发明装置处理后的高浓度氨氮废水中的氨氮率从以往的67.8-82.4%上升到了99.9%以上,不会产生二次污染,减轻了对环境的负担。
本发明公开了一种电镀废水固液分离方法,主要由化学法预处理、陶瓷膜分离、重金属回收、陶瓷膜清洗四个工艺单元组成。本发明解决了对废水中悬浮物重力沉降性能要求高的缺陷,大大提高了固液分离的效果及浓缩倍数,固液分离过程中不需要投加混凝剂及絮凝剂,药剂消耗大幅度降低。本发明克服了现有沉淀法高场地占用以及沉降速度慢、耗时长等缺点,提高了固液分离的效果,在固液分离过程中无需投加混凝剂及絮凝剂,因而药剂消耗大幅度降低。由于实现了重金属化合物的回收,因而也没有需要单独处理的固体废弃物产生,在减少环境污染的同时降低了废水处理过程中的污泥处理费用。因此,本发明是一种适合电镀废水固液分离的理想方法。
本发明涉及一种含磷含油废水的处理方法,属于水处理技术领域。步骤:第1步,将含磷含油废水先进行预过滤,再通过湿式氧化处理;第2步,将氧化处理后的料液的pH调节至9~11,再在超声辅助的条件下,加入钙盐沉淀剂和聚丙烯酰胺絮凝剂进行沉淀反应,去除沉淀后,得到第一料液;第3步,将第一料液的pH调节至3~5,加入聚合氯化铝,进行絮凝沉淀反应,去除沉淀后,得到第二料液;第4步,将第二料液送入反渗透膜中进行过滤,得到处理后的产水。本发明提供的废水处理方法可以较好地对同时含磷和含油的废水进行处理,具有工艺简单、处理效果好的优点。
一种含锌废水膜法处理回用方法,锌的加工或电镀废水首先在第一容器内加入碱反应处理,碱反应的水在第二容器内加入絮凝剂,絮凝后水进入浓缩容器即废水浓缩槽,浓缩后再经循环泵进入管式膜微滤装置,管式膜微滤装置处理的水由反渗透给水泵进入保安过滤器后再经高压泵进入反渗透装置,反渗透装置产水进入反渗透产水箱,水进行回用。采用本发明的处理系统,采用管式膜微滤装置,处理效果稳定,操作运行简便,能减少占地面积,对含锌废水处理非常好。
本发明涉及一种柚子皮基低浓度含铬废水吸附剂的制备方法,属于吸附剂制备技术领域。本发明首先利用菠菜和甜菜酶解发酵液中具有还原性的草酸、维生素和有机酸,将废水中的六价铬还原为三价铬,降低废水毒性,再利用发酵液中的有机羧酸和鱼肉焖炖后的离心液中的氨基酸具有亲水性羧基、氨基的原理,将废水中铬离子周围的水分子吸附,使铬离子裸露出来,最后具有巨大比表面积的柚子皮瓤将铬离子吸附富集,提高了吸附效率,最终达到处理含铬废水的目的。本发明制得的复合吸附剂处理工艺简单,原材料易得,且对低浓度含铬废水的脱除率高,还原能力强,结合了物理和生物法的优点,投加量小,处理成本低廉,具有广阔的应用前景。
本发明公开了一种硫化钠废水脱硫的方法,属于电子电镀废水治理及资源化综合利用领域。其包括如下步骤:(A)调节含硫化钠的废液的pH值,使其处于6.0-9.0之间;(B)将步骤(A)中pH调节后的含硫化钠的废液引入曝气反应池内,开启曝气机,同时加入质量含量0.1%-10%的催化剂,反应0.5-2h;(C)将步骤(B)中得到的混合溶液自流至沉淀池内,静止沉淀1-2h;(D)将步骤(C)上清液作为出水,进入下一个污水处理单元中,沉淀池内的剩余沉淀物取出,装包外运。催化剂为一种金属及其氧化物或多种金属及其氧化物的混合物。它具有氧化效率高、脱硫彻底、工艺简单等优点,能够实现废水中硫化钠的有效脱除。
本发明公开了一种煤矿井下废水处理回用装置,包括依次管路连接的初沉池、乳化池、管道混合器、铁碳微电解耦合芬顿氧化池、絮凝反应池、生物滤池及消毒池;乳化池上端设有乳化剂投药箱;管道混合器上方设有双氧水投药箱,管道混合器另一端设有第三出水管,第三出水管延伸进铁碳微电解耦合芬顿氧化池内,并位于铁碳微电解耦合芬顿氧化池内顶端;铁碳微电解耦合芬顿氧化池内设有铁碳填料;絮凝反应池的上方设有絮凝剂投药箱和碱投药箱。本发明利用酸性矿井废水中的酸、Fe3+、Fe2+、Mn2+来参与废水处理,一方面节约了试剂投入成本,另一方能够很好的处理废水,处理后出水指标满足GB5749‑2006《生活饮用水卫生标准》要求。
本发明公开了一种PTA残渣高浓度含溴废水高值化利用的方法,属于PTA残渣处理领域。本发明首先调节含溴废水的pH为0.5~2,分批加入氧化亚铜,氧化亚铜全部加入后反应3‑20min生成溴化亚铜,固液分离得到固体经过酸洗、醇洗、干燥得到溴化亚铜,将液相经过浓缩处理回收无机盐,剩余废水可作为工艺水应用;其中,所述分批加入氧化亚铜是指分2~5次加入,每次间隔0.5~1min。本发明通过加入氧化亚铜并调控方法使得溴脱除率高达95%以上,且溴化亚铜的产率达90%以上,纯度可达95%,能够作为高价值产品应用,同时能够得到纯度高达90%以上的硫酸钠,真正实现了PTA残渣高浓度含溴废水的高值化利用。
本发明提供一种应用于高浓度有机废水处理的一体化设备及工艺,涉及机废水处理技术领域。该应用于高浓度有机废水处理的一体化设备及工艺,包括大功率虹吸泵、三级过滤机构、螺旋滚筒、喷料器、深度处理装置、沉淀池、一级抽水泵和二级抽水泵;所述大功率虹吸泵的出水口通过管道与三级过滤机构连接,所述三级过滤机构的末端出水口通过管道与螺旋滚筒的进水口连接,所述喷料器安装于螺旋滚筒投料口的顶部;所述深度处理装置的末端排水口通过管道连接沉淀池。通过设计系统性的有机废水处理设备,可以对水体中的固体杂物、泥沙以及多种有机污染物进行有效净化去除,而且设备可实现全自动工作,使用方便快捷,综合处理成本低。
本发明属于废水处理领域,具体涉及一种电子厂高磷高氮废水的处理方法,包括如下步骤:步骤1,将硫酸亚铁、镧系化合物、活性炭和水混合搅拌,配置形成药剂;步骤2,将药剂加入至废水中,然后加入金属粉,加入碱溶液调节pH至10‑11,搅拌反应60min以上,得到反应液;步骤3,将聚铁和聚丙烯酰胺加入反应液中,混凝沉淀后抽取上清液,得到上清液和废渣;步骤4,将上清液加入至综合废水生化系统处理,得到排放液;步骤5,将滤渣加入至压滤机内压滤得到固体废弃物,作为固废处理。本发明利用单质金属和亚铁离子的还原性,在碱性条件下,利用吸附混凝沉淀的方式降磷降氮,辅以生化系统,保证排水达到国家污水综合排放标准。
本发明公开了一种提高硫酸盐有机废水产甲烷效率的方法,包括取厌氧污泥,向其中投加单壁碳纳米管,形成混合层,然后在厌氧环境下,将硫酸盐有机废水通过所述混合层,回收废水中所产生的甲烷。相对于现有技术,本发明利用添加单壁碳纳米管,形成厌氧“导电”颗粒污泥,可以显著提高硫酸盐有机废水产甲烷效率,甲烷产率可提高20%‑30%。此外,利用UASB的运行特点,可确保碳纳米管长期留存于反应体系中,避免了持续添加碳纳米管的工序,从而使工艺得到简化并降低了维护费用。
本发明公开了一种适用于碱渣废水催化湿式氧化的铈、锰二元催化材料及其制备方法和应用。该适用于碱渣废水催化湿式氧化的铈、锰二元催化材料,为以γ‑Al2O3为载体材料,以铈、锰金属元素为活性成分的催化材料。本发明的适用于碱渣废水催化湿式氧化的铈、锰二元催化材料的制备方法简单,容易实现,所获得的铈、锰二元催化材料,特别适合用于处理碱渣废水,经试验表明降解效率明显提高,CODcr去除率比相同条件下未添加催化剂的湿式氧化降解效果提高40%以上,TOC去除率比相同条件下未添加催化剂的光降解效果提高47%以上,具有很好的实用性。
本发明涉及一种以磷化废水为原料制备羟基磷灰石的工艺方法,本发明针对高浓度磷化废水,以NaOH为调节剂,以Ca(OH)2为沉淀剂,处理高浓度磷化废水的同时制备羟基磷灰石,并采用分步沉淀与产物形态控制方法,保证产物羟基磷灰石的纯度,提升羟基磷灰石的品质。本发明工艺简单,操作简便,不但可以去除磷化废水中的大部分PO43?与重金属离子,使出水水质达到排放标准,而且副产物得到回收利用,具有良好的经济效益与应用前景。
本发明提出的是一种稀土碳沉废水和萃余液资源化处理装置及方法,是针对P507‑盐酸体系、氨水皂化的稀土分离过程中产生的高氨氮废水,即含重金属离子、高浓度氯化铵的稀土碳沉废水,以及含油、高浓度氯化铵的萃余液。对于萃余液,通过陶瓷膜过滤装置进行循环过滤浓缩,回收萃取剂,除油后的萃余液去蒸发;对于稀土碳沉废水,首先利用预处理设备调节pH、絮凝、反应、浓缩,去除稀土碳沉废水中的悬浮物与重金属离子;其次利用超高压反渗透装置进行净化与浓缩;最后利用MVR蒸发结晶装置产出纯度达到99%的氯化铵产品;超高压反渗透产水与MVR蒸发结晶冷凝液满足回用要求,从而实现对稀土碳沉废水和萃余液进行水与盐的资源化回收利用。
本发明涉及一种焦化厂废水蒸发结晶的处理系统,属于焦化废水处理领技术领域,包括一效浓缩单元、二效浓缩单元和三效浓缩单元;所述一效浓缩单元的进料口连接有对物料进行预热的预热单元,所述一效浓缩单元的出料口连接所述二效浓缩单元的进料口;所述二效浓缩单元的出料口连接所述三效浓缩单元的进料口;三效浓缩单元的出料口连接有固液分离单元;所述一效浓缩单元的蒸汽进口连接加热室,蒸汽出口连接所述二效浓缩单元的蒸汽进口;所述二效浓缩单元的蒸汽出口连接所述三效浓缩单元的蒸汽进口,所述加热室提供生蒸汽;所述三效浓缩单元的蒸汽出口连接有末效冷凝器。能够对焦化厂废水中的固体盐和水分进行分离,减少焦化厂废水对环境的污染。
本发明公开了一种基于飞灰的高盐有机废水净化及生物质催化热解联合处理工艺,该工艺是利用飞灰具有高比表面积和发达孔隙吸附的特点处理高盐有机废水,并将吸附后飞灰与生物质进行共热解,吸附饱和飞灰中有机污染物在高温热解下得到分解,同时吸附的无机盐离子作为催化剂催化热解生物质,得到更多的可燃气体和有价值中间化学品。本发明不仅废水处理成本低,经济效益好,还能实现吸附后飞灰和有机生物质的无害化、资源化处置,为废水处理和固体废弃物的资源化利用提供新的方向,具有很好的环保和经济价值。
本发明公开了一种精对苯二甲酸生产废水的处理方法。本发明采用预处理—厌氧—好氧结合的处理工艺,其处理过程为:精对苯二甲酸生产废水先经过酸沉预处理,固液分离后的对苯二甲酸回收利用;预处理后的废水经加碱和氮、磷调节后进入改进的折流板厌氧反应器进行厌氧生化处理,经厌氧生化处理去除废水中大部分有机污染物后,再输入好氧活性污泥反应器中进行好氧生化处理,好氧出水输入沉淀池进行泥水分离,上清液出水达标排放。本发明的处理方法优点是工艺简单耗时少、效率高、剩余污泥少、投资和运行费用低,经过处理后的出水达到国家排放标准。
本发明公开一种电絮凝处理炸药废水的方法,在待处理炸药废水中加入硫酸亚铁,输送到搅拌器中搅拌,再进入第一沉淀塔沉淀,每升待处理炸药废水投加10~30mg硫酸亚铁;在第一沉淀塔沉淀后的废水中加入阳离子聚丙烯酰胺敏化剂和pH调节剂,进入第一级电絮凝处理设备预处理,使pH值至5~6,预处理后进入第二沉淀塔沉淀,聚丙烯酰胺敏化剂与待处理炸药废水的重量比是1:1000~3:1000;第二沉淀塔的出水进入第二级电絮凝处理设备处理,再进入中和沉淀池,加入聚合氯化铝混凝处理,每升待处理炸药废水投5~10mg聚合氯化铝;采用双极电絮凝技术以及利用混凝沉淀作为辅助工艺,方法简单易施,成本低,效率高。?
本发明公开了一种处理螺内酯中间体生产废水的方法,其特征在于,包括了四个步骤:1)中和反应;2)通过减压、冷却、加溶剂、冷却、压滤和洗涤分离出滤液、固体和洗涤液;3)固体真空干燥得到溴化钠;4)滤液和洗涤液合并回收溶剂直接套用,残液蒸出二甲亚砜。本发明采用HBr水溶液对螺内酯中间体产生的废水进行中和反应,再通过减压、冷却、加溶剂、冷却、压滤和洗涤分离出滤液、固体和洗涤液,利用压力回收溶剂,使溶剂能够变废为宝,降低了废水处理的难度和时间,提高了废水处理的效率,同时避免了污染环境,减轻了环保处理的压力。
本发明涉及离子液体支撑液膜渗透汽化-精馏耦合技术回收农药废水中低浓度甲醛的技术,包括:(1)含有低浓度甲醛的农药废水先使用装有离子液体支撑液膜的渗透汽化装置在透过侧完成甲醛溶液的预富集;(2)预富集的甲醛废水进入精馏塔中部,在装填有固体酸催化剂的精馏塔反应段内进行催化反应,通过泵外循环方式以合理控制停留时间,使主要以聚合物形式存在的甲醛解聚得到游离形态的甲醛,再进入到精馏段进行浓缩,获得高浓度甲醛溶液,而提馏段则得到去甲醛的废水溶液。由于采用装有离子液体支撑液膜的渗透汽化装置先对甲醛溶液进行预富集再用精馏法分离,与单一精馏法分离相比可以大大节省能耗,降低成本,从而更加经济合理。
本发明涉及一种三元前驱体废水电解处理系统,用于电解处理含有硫酸钠或硫酸锂的废水,包括:废水单元;电解单元,所述电解单元与所述废水单元连接,所述电解单元为双极膜电解单元;电源单元,所述电源单元与所述电解单元连接,提供直流电源;酸液暂存单元,所述酸液暂存单元与所述电解单元连接;碱液暂存单元,所述碱液暂存单元与所述电解单元连接;酸液循环单元,所述酸液循环单元分别与所述酸液暂存单元和所述电解单元连接;碱液循环单元,所述碱液循环单元分别与所述碱液暂存单元和所述电解单元连接。还涉及一种三元前驱体废水电解处理方法。其优点主在于,通过双极膜电解单元将高浓度废水电解产生稀酸液、稀碱液并回收使用,实现循环使用。
本发明涉及一种化工废水生化出水的高效处理及回用方法,属于废水处理领域。其步骤为:(1)在反应池中进行芬顿氧化反应,调节pH值为5~7,向水样中投加硫酸亚铁和双氧水,使得Fe2+浓度为1~3mmol/L,H2O2浓度为2~5mmol/L,反应60~600分钟;(2)将基化超高交联树脂与步骤(1)中的出水混合,树脂的用量为水体积的0.1%~5%,混合10~1000分钟;(3)将步骤(2)出水进行树脂和水的固液分离,分离后的出水即可排放或直接回用。本方法可有效去除化工废水生化出水中的难降解物质,出水达到国家城镇污水处理厂污染物排放一级A标准及相关再生水回用标准,适用于废水的深度处理及回用。
本发明公开了一种用于废水处理的高效COD去除剂,其特征在于该高效COD去除剂由以下重量比组分制成:硫酸铝20~25%、硫酸铁25~30%、水玻璃5~10%、高锰酸钾10~25%、水25~35%。本发明高效COD去除剂对有机废物的降解效果是市场上同类产品的两倍以上,化学品投加量更少,大大降低污泥的产生量和污泥处理成本,是一款高效、高性价比水处理化学品,尤其适用于有机物浓度大、高毒性、高色度、难生化废水的处理,能够很好的适应并满足市场需求。
本发明公开了一种多步酸析回收生产5-氯水杨酸的母液废水中5-氯水杨酸的方法,属于化工废水处理技术领域。本发明的回收步骤为:(1)将5-氯水杨酸的母液混合,泵入酸化搅拌釜Ⅰ,滴加浓盐酸或浓硫酸,搅拌均匀得酸化液A;(2)将酸化液A离心,得离心清液B和离心颗粒沉淀物;(3)将离心清液B滴加浓盐酸或浓硫酸,搅拌均匀得酸化液C;(4)将酸化液C离心,得离心清液D和离心颗粒沉淀物;(5)依次重复步骤(3)所述的酸析操作和步骤(4)所述的离心操作,直至回收操作结束。本发明实现了5-氯水杨酸的有效回收,同时大幅度减少了母液废水中的COD,降低了废水处理难度,实用性强。
本发明公开了一种从高氟高氨氮酸性废水中回收冰晶石、萤石和硫酸铵的方法,所述方法包括如下步骤:(1)加入酸碱试剂调节高氟高氨氮酸性废水的pH,将废水加热,加入硫酸铝搅拌反应,再加入硫酸钠搅拌反应,过滤,得到冰晶石和溶液A;(2)加入试剂将溶液A的pH调至8~9,再加入硫酸钙,搅拌反应,过滤得氟化钙沉淀和溶液B;(3)在溶液B中加入硫酸铝,搅拌反应2h,过滤,得到沉淀S1和溶液C;(4)用硫酸将溶液C中的pH调至5~6,浓缩即可得到硫酸铵结晶。本发明不仅提供了一种新的处理高氟含氟废水工艺,具有工艺条件简单、容易控制,可实现车间处理批量化。
本发明公开了一种基于紫菜加工废水的经济微藻高效培养基的制备方法及以此方法制成的经济微藻高效培养基,该方法主要包括:1)将含有紫菜残渣的紫菜加工废水超声破碎10‑60 min后采用离心或过滤的方法去除杂质,获得预处理废水;2)在预处理废水中补充适量微藻生长所需的营养物质,制成经济微藻培养液;3)将培养液紫外灭菌5‑60 min,获得微藻高效培养基,可直接用于微藻培养。本发明以紫菜加工废水为原材料制备微藻高效培养基,操作简便,不仅可获得较高的微藻生物量,促进微藻高价值活性物质的累积,同时还可显著降低经济微藻的规模化培养成本,有效缓解紫菜加工废水排放引起的环境污染问题。
本发明公开了一种利用餐厨废水培养固碳螺旋藻的方法,属于环境工程和微藻培养技术领域。本发明在餐厨废水中加入微量元素制备成微藻培养基,用于培养微藻,基本能达到Zarrouk培养基的效果,减少了化学药品的使用,减少了环境污染,同时降低了微藻生产成本,可用于可持续化微藻生产,同时培养基制备方法简单,餐厨废水不需要灭菌即可用于培养,本发明还实现了餐厨废水的资源化利用,减少了环境污染,餐厨废水中氨氮利用率可达100%,亚硝氮利用可达72.361%,硝氮利用量为7.849%,TN的利用为32.035%,固碳螺旋藻对氮元素的吸收能力为NH4+-N>NO2--N>NO3--N,并且废水中的氮源足够提供螺旋藻的生长;TP利用率为59.140%。
中冶有色为您提供最新的江苏有色金属废水处理技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!