本发明公开了一种镍磷基钠离子电池负极复合材料,由还原氧化石墨烯负载Ni‑P活性材料得到,所述Ni‑P活性材料由Ni3P和Ni2P2O7两相组成。本发明还公开了镍磷基钠离子电池负极复合材料的制备方法,包括:(1)利用溶剂热法制备纳米棒状的NiNH4PO4前驱体;(2)将NiNH4PO4前驱体进行热还原,得到纳米Ni‑P材料;(3)利用溶剂热法将纳米Ni‑P材料与氧化石墨烯复合制得所述的镍磷基钠离子电池负极复合材料。本发明生产工艺易控制可重复,便于进行大规模生产。本发明复合材料首次用作钠离子电池负极电极材料,具有较高的初始放电比容量和充电比容量及良好的循环稳定性。
本发明公开了一种面向结构健康监测的非晶纤维基复合材料及其方法和应用,制备方法是:S1:将连续的非晶合金纤维在预浸料的表面铺丝,得到非晶合金纤维阵列预浸料;S2:将若干预浸料和非晶合金纤维阵列预浸料铺层叠加,得到非晶纤维基复合材料前体;非晶纤维基复合材料前体含有至少一层非晶合金纤维阵列预浸料;S3:将非晶纤维基复合材料前体铺贴在平面模具或曲面模具上密封抽真空后,在110~250℃、0.1~0.6MPa的条件下固化成形,得到非晶纤维基复合材料。该复合材料集成结构和功能于一体,可同时具有电磁屏蔽或透波能力、结构健康监测和优异的力学性能。该复合材料面向工程应用领域,可以替代目标本体上对应的金属结构,具有轻量化多功能化的特点。
本实用新型属于纤维热塑性复合材料生产技术领域,尤其是一种纤维热塑性复合材料生产用张力调节器,针对现有技术中的张力调节器不能实现快速准确的张力调节效果,导致使用者在调节时,不能在精准和快速之间平衡,导致调节效果不佳,且大部分调节器的缓和性较差,容易造成复合材料的损坏的问题,现提出如下方案,其包括底板,所述底板的顶部固定安装有背板,所述底板的底部固定安装有两个支撑板,位于左侧的支撑板上固定安装有安装板,所述安装板的顶部固定安装有抱闸电机,该张力调节器通过抱闸电机与复合材料之间的传动,实现了对复合材料张紧度快速精确的调整,省时省力,且操作方便,结构简单,实用性强。
本发明涉及一种三维混杂纤维增强热塑性复合材料的制备方法,包括如下步骤:1),将增强纤维纱以及增强纤维与热塑性树脂纤维混合而成的混纤纱缠绕在纱锭上,通过三维编织机将两种纱线编织成混杂的三维织物;2),将编织所得的三维织物放置于模具中;3),模具放置于热压机中,进行热压;4),将所得的热压后的材料进行冷却固化;5),将冷却至室温后的模具进行分模处理,得到三维混杂纤维增强热塑性复合材料。本发明制备的复合材料具有更高的断裂韧性、能承受更大的变形、更适合于抵抗冲击载荷,其加热熔融性不仅实现了三维连续纤维复合材料的快速成型,还实现了复合材料的重复加工再生利用。
本发明公开了一种2‑2型压电复合材料及其制备方法和应用;该复合材料包括作为功能相的压电材料和作为填充相的环氧树脂。多层压电材料与多层复合材料依次交替层叠;所述的压电材料采用PIMNT三元系压电单晶。所述的压电材料在复合材料中的体积分数为45%~55%。单层压电材料的宽高比为0.1~0.25。本发明采用EPO‑TEK301环氧树脂作为聚合物基体,流动性和粘接力上佳而固化后硬度适中,同时密度较低,与压电单晶复合后可降低其声阻抗,大大提升声学匹配性能。此外,本发明优选体积分数为50%,宽高比为0.2,能够保证在有效保持复合材料高性能的同时,降低晶体断裂率,从而提高制备成功率。
本发明公开一种非晶氧化铁纳米颗粒/多层石墨烯复合材料及制备方法,该复合材料以超声法制备的表面没有活化的多层石墨烯作为基底,非晶氧化铁纳米颗粒均匀覆盖在多层石墨烯表面。该复合材料的制备过程:以DMF和水的混合溶剂作为反应体系的溶剂,加入膨胀石墨烯后通过超声法制备多层石墨烯,随后加入FeCl2和EDTA‑2Na,在90℃恒温条件下磁力搅拌反应2小时,冷却后通过离心清洗、烘干后得到本发明复合材料。该复合材料中的氧化铁颗粒为非晶态、尺寸小,具有非常高的电化学活性,多层石墨烯可以提供导电网络,在超级电容器负极材料、锂离子电池负极材料方面具有潜在的应用。
本发明涉及氧化钨‑石墨烯复合材料技术领域,更具体的说是一种氧化钨‑石墨烯复合材料制备方法与应用;氧化钨‑石墨烯复合材料制备方法,该方法包括以下步骤:步骤一:将氧化石墨烯加水制成氧化石墨烯水溶液;步骤二:将溶于乙醇的钨溶液加入到氧化石墨烯水溶液进行混合,得到混合液;步骤三:在混合液搅拌的同时加入丙酮并在微博条件下生成混合物;步骤四:将混合物进行洗涤并烘干;步骤五:将混合物进行加热,冷却后进行研磨得到氧化钨‑石墨烯复合材料;可以提高制备氧化钨‑石墨烯复合材料的效率。
本发明公开了一种碳酸氧镁负载绿绣的纳米复合材料的制备方法,将水溶性镁盐、水溶性铁盐和尿素混合搅拌,溶解于去离子水和乙二醇的混合溶液;将溶液转移至聚四氟乙烯反应釜中,随后将聚四氟乙烯反应釜放置于烘箱中反应;将上述反应结束后的材料用脱氧后的去离子水和无水乙醇,低温冷冻干燥得到复合材料。还包括碳酸氧镁负载绿绣的纳米复合材料及其在含磷酸盐废水中选择性去除磷酸盐中的应用。本发明通过简单的一步水热反应法,制备了一种碳酸氧镁负载绿绣的纳米复合材料,本发明所制备的复合材料中绿绣纳米颗粒分散在碳酸氧镁纳米片上,该材料可以选择性去除磷酸盐并且具有较宽的pH适用性(4.0‑10.0),且吸附后的材料可作为缓释肥料用于农业。
本发明公开了一种磷化锂/碳纳米管@多孔碳核壳结构复合材料及其制备方法和应用;该复合材料通过磷酸锂与碳纳米管的混合颗粒在包裹聚合物后加热,使得聚合物碳化,磷酸锂转化为磷化锂得到。磷酸锂与碳纳米管质量比为98:2。聚合物为聚多巴胺。本发明中的利用研磨+磷酸根脱氧的方式获得的小尺寸磷化锂/碳纳米管颗粒被多孔碳紧密包裹,提高了复合材料的电子导电性;同时,由于磷化锂被多孔碳紧密包裹,实现了性质较不稳定的磷化锂与环境的分离,提高了复合材料整体的化学稳定性,进而使得该复合材料能够应用到硬碳材料中作为补锂材料,并显著提高硬碳材料作为负极时的首次库伦效率。
本发明专利公开了通用航空飞机复合材料修理仪,包括计算机,所述计算机的外部设有显示器和计算机输入模块,所述计算机的内部设有中心控制模块、显示模块、打印模块、压力控制模块以及温度控制模块,所述计算机输入模块、所述显示模块、所述打印模块、所述压力控制模块、温度控制模块分别与所述中心控制模块电性连接,所述显示模块和所述显示器电性连接。本发明在复合材料修理区域形成负压,以满足复合材料修理中的贴合要求,并可以进行精确的压力检查和调整;本发明对复合材料修理区域施加温度可调的加热功能,并可以对加热实现升温速率、升温过程、温度维持时间及冷却速率的控制;以保证符复合材料的修理效果和质量。
本发明公开一种用于碳纤维复合材料电缆芯的联接锚固装置,包括联接环、楔形块、联接套筒和内空螺栓,联接环一端的内缘与联接套筒一端的外缘螺纹连接,联接环的另外一端为环形端;碳纤维复合材料电缆芯的一端插入楔形块后的外径与联接套筒的一端内径配合,碳纤维复合材料电缆芯的另外一端依次穿过联接套筒、内空螺栓,内空螺栓的外缘与联接套筒的另外一端的内缘通过螺纹联接;在联接套筒内灌注胶粘剂,胶粘剂固化后将碳纤维复合材料电缆芯的碳纤维杆和联接套筒紧固连接。本发明具有能够可靠、方便地对碳纤维复合材料电缆芯进行锚固的优点,使作用力较好地分布在接触表面,对FRP材料的机械损伤较小。
本发明公开一种非晶纳米晶高频抗干扰磁芯复合材料及制备方法和磁芯,该复合材料由纳米晶Fe3O4和非晶SiO2纳米颗粒相互均匀分散组成,两者的颗粒直径均小于5nm。该复合材料制备采用低温水浴法一步制备:称取一定量的FeCl2、醋酸钠和正硅酸乙酯溶解于DMF和水的混合溶剂中,在80℃~90℃水浴锅中进行磁力搅拌,反应时间2~4小时后,先后采用水和酒精进行磁分离清洗,室温干燥后获得本发明复合材料。该非晶纳米晶复合材料压制的磁芯可用于高频干扰信号的抑制和吸收。
本发明提供了一种纳米粒子/纤维复合材料的制备方法,利用蒸汽爆破法将纳米粒子均匀地分布在纤维上,以制备纳米粒子/纤维复合材料。本发明提供的纳米粒子/纤维复合材料的制备方法,利用蒸汽爆破法将纳米粒子均匀地分布在纤维上,以制备纳米粒子/纤维复合材料。本发明的制备方法,工序简单,成本低,能耗低,生产效率高,适合工业化生产。本发明的制备方法所制备的纳米粒子/纤维复合材料在无胶纤维板生产领域中具有广阔的应用前景。
本发明提供了一种掺稻壳灰的水泥基复合材料连续制备系统,属于建筑材料生产技术领域。包括密闭风箱、粉料供给机构、液料供给机构、骨料供给机构和搅拌出料机构,入口处连接一鼓风机的出气端,粉料供给机构向密闭风箱内送入制备水泥基复合材料所需的粉末类物料,液料供给机构向密闭风箱内送入制备水泥基复合材料所需的液体类物料,骨料供给机构向密闭风箱内送入制备水泥基复合材料所需的骨料;由入口进入密封风箱内的气流依次作用粉末类物料、液体类物料和骨料上,使制备水泥基复合材料所需的粉末类物料、液体类物料和骨料初步混匀后由搅拌出料机构进行二次匀化并出料。本发明具有能够连续生产、效率高、产品均一等优点。
本发明提供了一种用于发动机装饰盖的复合材料的制备方法,涉及车辆发动机技术领域。本发明先将预设比例的硝酸铋、钨酸铵、纳米二氧化硅和稀硝酸加入到反应器皿中,在第一预设温度下反应第一预设时间,制备获得溶液A;然后对溶液A进行洗涤和过滤后,在第二预设温度下干燥第二预设时间,制备获得钨酸铋/纳米二氧化硅改良剂;之后将钨酸铋/纳米二氧化硅改良剂、塑料、抗氧剂、玻璃纤维混合制备获得混合料;最后将混合料挤压造粒,以得到复合材料颗粒。本发明中由于钨酸铋和纳米SiO2的复合材料中Bi3+的进入SiO2的晶格中置换出Si4+,提高了复合材料颗粒的结晶度,导致了钨酸铋和纳米SiO2的复合材料的光催化活性的提高。
本发明涉及金属材料技术领域,尤其涉及高强高导铜‑石墨复合材料及其制备方法。本发明的目的在于提供一种高强高导铜‑石墨复合材料及其制备方法,其中高强高导铜‑石墨复合材料的制备方法,包括:步骤S1:将铜粉、石墨粉在以紫铜为球磨罐内衬和球磨介质的球磨罐中球磨成纳米粉体,其中,石墨粉的含量大于0小于等于1wt.%,其余为铜粉;步骤S2:将所述纳米粉体压制成型,得到坯体;步骤S3:将所述坯体在400~480℃条件下进行烧结,得到铜‑石墨复合材料。本发明通过在以紫铜为球磨罐内衬和球磨介质的球磨罐中进行球磨,进而获得无铁杂质、无磁性并且具有高强度和高电导率的铜‑石墨复合材料,并且铜‑石墨复合的制备过程工艺简单,无熔炼过程,达到节能环保的效果。
本发明公开了一种用于锂硫电池正极的复合材料,由硫化锂纳米颗粒和多孔碳复合而成,所述硫化锂纳米颗粒镶嵌于多孔碳中。本发明还公开了该用于锂硫电池正极的复合材料的制备方法,将硫化锂与碳源进行球磨混合,再经炭化、冷却后得到所述的复合材料;所述的碳源选自聚丙烯腈、偏聚氟乙烯、聚乙烯或聚丙烯。本发明提供了一种用于锂硫电池正极的复合材料,具有容量高、循环性能好、成本低廉等优点。本发明还提供了所述复合材料的制备方法,工艺简单,适合规模化生产。
本发明公开了一种利用水葫芦制得的Fe3O4/C复合材料及其应用,所述Fe3O4/C复合材料的制备方法包括如下步骤:(1)将水葫芦在含有铁元素的水体中进行培养,然后把培养后的水葫芦进行冷冻干燥;(2)将冷冻干燥后的水葫芦与质量分数为10~30%的聚苯乙烯的DMF溶液混合,然后在氮气或氩气保护下以5~20℃/min的升温速率升至400~1000℃进行碳化2~7小时,碳化后冷却、研磨得到Fe3O4/C复合材料。本发明提供了所述的Fe3O4/C复合材料作为锂离子电池负极材料的应用以及由此制得的锂离子电池。本发明的制备方法在改善环境重金属污染的同时具有原材料来源广泛、易于工业化实施、制备工艺简单、对环境友好的特点,制得的Fe3O4/C复合材料作为锂离子电池负极材料应用具有良好的循环性能和库伦效率。
本发明提供了一种芯层发泡复合材料,芯层发泡复合材料从上到下为第一硬质物料层、发泡芯层和第二硬质物料层;第一、二硬质物料层均由聚对苯二甲酸乙二醇酯‑1,4‑环己烷二甲醇酯、碳酸钙、硬脂酸、丙烯酸脂制成;发泡芯层由聚对苯二甲酸乙二醇酯‑1,4‑环己烷二甲醇酯、碳酸钙、硬脂酸、偶氮二甲酰胺、碳酸氢铵、丙烯酸酯制成。制备方法为:将经挤出机挤出的硬质物料和发泡芯层物料同时经过分配器挤出第一硬质物料层的物料、发泡芯层的物料和第二硬质物料层的物料,进入模具中发泡成型后经冷却辊组降温、压延辊组保温、定厚成型,得到芯层发泡复合材料。本发明的芯层发泡复合材料尺寸稳定性好,可以做地热地板,重量轻。
本发明涉及光催化剂技术领域,为了克服现有合成氨催化剂所需催化温度高、压强大、活化时间长、催化效率低、难保存、反应条件严苛的不足,公开一种C/FeNi纳米复合材料及其制备方法及其在催化固氮合成氨中的应用。C/FeNi纳米复合材料由Fe盐、Ni盐、配体反应后煅烧得到,具有纯度高、性状好的优点,同时,本发明制备的C/FeNi纳米复合材料呈棒状多孔结构,Fe‑Ni复合单元分布均匀、具有较大的比表面积,具有较高的活性中心密度,因此表现出良好的催化活性。C/FeNi纳米复合材料应用于光催化固氮合成氨反应,无需活化、所需反应条件温和、光利用率高、催化效率高、可重复利用性强的优点。
本发明涉及一种导电复合材料,特别涉及一种具有压阻感应性能的纤维素/石墨烯纳米片柔性导电复合材料的制备方法。该材料是由如下方法制得:(1)石墨烯纳米片乙醇分散液制备;(2)溶剂浇筑与纤维素凝固再生;(3)纤维素/石墨烯纳米片复合材料制备:将上一步制得的纤维素/石墨烯纳米片复合凝胶用去离子水反复冲洗到pH值在7‑7.5之间,干燥,最后通过热压成膜压成纤维素/石墨烯复合片材。本发明所述复合材料是以石墨烯纳米片为插层的纤维素/石墨烯纳米片层状复合结构,其中固定在纤维素结构中的小尺度石墨烯纳米片之间的连接状态可根据外界压力变化而变化,进而具备导电和压阻感应性能。
本发明涉及无损检测技术领域,旨在提供一种高压复合材料储氢气瓶声发射信号处理方法。包括:针对待测高压复合材料储氢气瓶进行声速测量,采集声发射信号数据和压力数据;并进行处理:使用经验模态分解法分解原始声发射信号为多个本征模态函数;选择包括声发射信号主要特征的若干个IMF重构声发射信号的特征参量并通过线性相关分析确定主要特征参量;使用K均值聚类法对特征参量进行聚类;分析聚类结果,得到主要特征参量与损伤模式的关系。本发明可以有效过滤干扰信号,准确对声发射信号进行分类,有效判断高压复合材料储氢气瓶的损伤机制与损伤演变过程,为后续复合材料气瓶的声发射定期检测奠定基础。
本发明公开一种在线裂解雾化复合前驱体制备SnO2/非晶碳纳米复合材料的方法。该方法是采用特定配比的SnO2醇溶胶和葡萄糖混合物作为前驱体,利用压电陶瓷超声雾化器将其转换成前驱体气雾,由惰性载流气体将气雾引入到带有中空石英玻璃管的管式炉,利用热源,促使前驱体气雾发生裂解转化,实现SnO2/非晶碳纳米复合材料的在线制备。本发明克服了传统SnO2/非晶碳纳米复合材料制备步骤非连续、小批量、原材料利用不充分、产生大量废液和生产成本较高的缺点,具有制备工艺简单、快速、绿色环保等优点,为连续批量化、低成本地制备高质量SnO2/非晶碳纳米复合材料提供了可行性。
本发明涉及一种纳米二氧化钛/二硫化钼复合材料薄膜的制备方法。分别制备出纳米二氧化钛溶液和球形结构的二硫化钼,经过聚四氟乙烯反应釜和超声处理获得二氧化钛/二硫化钼复合材料的胶体,把胶体喷涂在粗化的不锈钢网上形成纳米二氧化钛/二硫化钼复合薄膜,以硝酸银溶液为电化学沉积电解液,不锈钢网为阴极,石墨为阳极,将银纳米颗粒沉积于纳米二氧化钛/二硫化钼复合薄膜上,得到银纳米颗粒反点阵列的纳米二氧化钛/二硫化钼复合材料薄膜。本发明制备的纳米二氧化钛/二硫化钼复合材料薄膜可广泛用于环境污染治理。
本发明公开了一种钛合金植入体复合材料及其制备与应用,所述钛合金植入体复合材料以钛合金粉经3D打印制作的模型为钛合金植入体基体,在钛合金植入体基体表面采用微弧氧化法形成微弧氧化膜层,然后再在微弧氧化膜层表面采用电化学沉积法形成羟基磷灰石层或氟羟基磷灰石层,最后在羟基磷灰石层或氟羟基磷灰石层表面浸渍形成聚乳酸层;本发明从原始受损骨结构的数据采集到最终多涂层复合结构的制备,实现了植入体材料的个性化开发,获得了高质量的钛合金植入体复合材料,其中极化测试显示其抗腐蚀性能得到2~3个数量级的提升,成骨细胞培养显示制备后的钛合金复合材料具有更好的骨细胞促进能力。
本发明公开了一种含氟超支化聚乙烯共聚物及其制备以及PVDF基介电复合材料的制备方法。本发明提供了一种含氟超支化聚乙烯共聚物,其通过如下方法制备:利用α‑二亚胺钯催化剂催化乙烯和含氟单体经一步法链行走机理合成。本发明还提供一种PVDF基介电复合材料的制备方法,具体步骤如下:(1)利用含氟超支化聚乙烯共聚物在氯仿中超声剥离石墨得到石墨烯有机分散液;(2)制备P(VDF‑TrFE‑CFE)粉末和石墨烯的混合溶液;(3)将所得混合溶液流延于模具上面,烘干得到PVDF基介电复合材料。本发明利用含氟超支化聚乙烯共聚物对石墨烯进行功能化改性,使得本发明制备的PVDF基介电复合材料具有较高的介电常数、低介电损耗。
本发明公开了一种自监测自修复碳纤维增强复合材料智能结构,包括复合材料基体以及碳纤维层,所述碳纤维层中安装有与外部电阻测量装置连接的电极;所述复合材料基体中设有至少一组孔道,每组孔道包括相互靠拢并且沿着相同方向延伸的两条孔道;每组中的两条孔道分别注入不同组份树脂胶,同一组的两条孔道中的树脂在孔道发生破坏时相遇后会发生固化;本发明将碳纤维和复合材料进行集成,不仅可大幅提高复合材料的强度,而且能够实现结构状态自监测以及损伤在线原位自修复,可有效避免严重事故的发生,以及减少损伤修复时间和成本。
一种轻质高导热聚合物复合材料及薄片的制备方法,其中轻质高导热聚合物复合材料为包括有聚合物、层状石墨填料和球状填料的共混物,球状填料为绝热空心的且为刚性球体的空心玻璃微珠、空心二氧化硅、空心碳酸钙中的一种或多种的共混物,层状石墨填料和球状填料占聚合物复合材料的质量含量为30 wt%~70 wt%,球状填料占聚合物复合材料的质量含量为1wt%~10 wt%。本发明在不加入增容剂、抗氧化剂的情况下,利用一定量的为绝热空心及刚性球体的球状填料来改变石墨在聚合物基体中的取向,在大幅度提升聚合物复合材料的导热率的同时,还可以降低其密度和导电性能,提升其力学性能,以及提高其表面的光滑细腻度及表面硬度,以便制备轻质、高导热及高表面光滑度的制品。
本发明涉及纳米复合材料技术领域,为解决常规方法制备的纳米银颗粒具有高表面能极易团聚,银纳米颗粒与硅橡胶基体之间的相容性较差,使其不易在基体中均匀分散而影响复合材料的综合性能的问题,本发明提出了一种银纳米混合填料改性硅橡胶导电复合材料的制备方法,采用化学还原法制备纳米银颗粒,用硅烷偶联剂进行表面改性,使之较均匀地分散在有机溶剂中,并结合银纳米线,采用溶液共混方法将银纳米颗粒及其混合填料分散到硅橡胶基体中,制备优异导电性能的弹性硅橡胶纳米复合材料。该复合材料不仅有稳定的电阻时间特性、较高的温度界限以及电阻温度系数可控等优点,而且兼具橡胶材料的高弹性。
本发明提供了一种石墨烯功能化的聚苯醚/尼龙6复合材料及制备方法。其组成包括聚苯醚(PPO)、尼龙6、石墨烯和PPO‑g‑MAH,该方法是利用石墨烯/尼龙6纳米复合材料与聚苯醚进行熔融共混挤出,该石墨烯/尼龙6纳米复合材料是由改性石墨烯与己内酰胺原位聚合得到。本发明所制备得到的高性能聚苯醚/尼龙6复合材料具有良好的冲击性能与刚性,更优异的抗紫外老化性、阻燃性、耐热性等,拓展了聚苯醚/尼龙6复合材料更高端领域的应用前景。
中冶有色为您提供最新的浙江杭州有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!