一种抗流失纳米金属材料/竹材复合材料的制备方法,本发明涉及一种纳米金属材料/竹材复合材料的制备方法。本发明要解决现有制备纳米金属材料/竹材复合材料的方法,在户外日晒、雨淋等恶劣环境下,很容易从竹材表面或者内部流失,使用寿命大大缩短的问题。制备方法:一、配制晶种溶液;二、竹材内部晶种预置;三、快速冷冻;四、真空冷冻干燥微孔化处理;五、配制前驱体溶液;六、制备抗流失纳米金属材料/竹材复合材料。本发明用于一种抗流失纳米金属材料/竹材复合材料的制备方法。
本发明涉及一种复合材料成形技术,尤其是涉及一种原位内生颗粒增强铝基复合材料的铸轧成型方法及系统。其主要是解决现有技术所存在的增强铝基复合材料生产时冷却强度低,仅为1‑10℃/s,不利于陶瓷相颗粒的捕捉与分布等的技术问题。本发明的方法包括:取适量反应物加入到熔炼炉进行原位反应,原位反应过程中开启组合磁场搅拌装置;原位反应结束后,静置,降温加入铝合金基体合金元素进行合金化;精炼、扒渣后,将复合材料熔体引入在线除气、过滤装置、前箱;开启超声熔体处理装置对熔体进行超声波处理;抽板,立板生产;质量合格后上卷生产,得到原位内生颗粒增强铝基复合材料铸轧卷成品。
本发明涉及复合材料气瓶检验技术,旨在提供一种声发射与水压试验相结合的复合材料气瓶检验装置及方法。该装置包括通过管路连接至复合材料气瓶的水压泵,管路上设有压力表和压力传感器,水泵调节系统通过信号线分别连接压力传感器和水压泵;复合材料气瓶呈水平放置,瓶身表面布置了分别通过信号线连接至声发射检测系统的六个谐振式传感器和两个宽频传感器;声发射检测系统同时采集来自谐振式传感器和宽频传感器的声发射信号,以及来自压力传感器的压力变化数据;本发明采用宽频技术的模态式声发射,能将声发射信号波形与声发射的物理过程相联系并能采集较宽的频率范围内的波形信息。能够有效地评定复合材料气瓶的损伤状态,保证气瓶的使用安全性。
本发明公开了一种多孔硅基合金复合材料,包括多孔硅基合金及包覆在多孔硅基合金表面的包覆层,所述包覆层包括碳包覆层和/或聚合物包覆层,所述多孔硅基合金中硅的质量百分含量为50~95%,所述碳包覆层的质量占多孔硅基合金复合材料总质量的0.5~10%,所述聚合物包覆层为导电聚合物包覆层、交联聚合物包覆层或特定官能团聚合物包覆层,其中导电聚合物包覆层占多孔硅基合金复合材料总质量的0.5~50%,交联聚合物包覆层占多孔硅基合金复合材料总质量的0.5~10%,特定官能团聚合物包覆层占多孔硅基合金复合材料总质量的0.5~50%。本发明成本低,具有良好电化学性能,能够有效的提高电池的能量密度。
本发明涉及一种可磁分离NiFe2O4/SBA?15复合材料的制备方法,该材料是在有序介孔SBA?15孔道内填充一定量磁性NiFe2O4纳米颗粒,制成的一种优良的磁性吸附剂。步骤:一、按一定摩尔比称取适量的SBA?15与金属盐;二、将上述材料共同加入到适量无水乙醇中,并在恒温下搅拌至完全干燥,再加入适量正己烷并搅拌至干燥得到粉末;三、将所得粉末煅烧得到NiFe2O4/SBA?15复合材料。本发明制备的复合材料可用于污水中的有机染料的吸附,且具有以下优点:一、SBA?15具有较大的比表面积,且在NiFe2O4填充后产生更多小孔,吸附能力良好;二、复合材料含有磁性NiFe2O4,具有良好的磁响应,容易从污水中磁分离回收再利用;三、复合材料制备简单,容易操作。
本发明涉及一种酒糟蛋白提纯残渣超微填料和全降解复合材料及其制备方法和应用,所述超微填料是在对酒糟蛋白提纯残渣进行超微粉碎过程中同步实现表面改性后得到的,所述全降解复合材料是以超微填料为原料,经干燥处理后,加入干燥的生物可降解聚酯、增塑剂以及相容剂预混,再将预混料经熔融共混复合改性后挤出切粒获得,另外提供了超微填料及全降解复合材料的制备及应用。本发明利用酒糟蛋白提纯后的残渣作为基体,配合生物可降解聚酯及其他助剂制备的全降解复合材料,不仅加工性能和机械性能优越,且可实现酒糟资源的全组分循环利用,且相较于植物纤维/生物可降解聚酯类全降解包装复合材料具有成本上的优势,具有良好的工业可操作性。
本发明公开了一种纳米生物活性玻璃水凝胶复合材料及其制备方法。该复合材料以琼脂糖-黄原胶水凝胶为载体,在琼脂糖-黄原胶水凝胶三维网络结构内负载有纳米生物活性玻璃材料。上述复合材料的制备方法,包括三个步骤:纳米生物活性玻璃材料的制备、琼脂糖-黄原胶水凝胶的制备以及生物活性玻璃水凝胶复合材料的制备。本发明通过琼脂糖-黄原胶水凝胶负载纳米生物活性玻璃,制备得到的复合材料具有改善的粘度和功能,可以在牙齿表面持续滞留提供稳定的矿物离子释放,且不改变纳米生物活性玻璃本身的活性。
本发明公开了一种ZnCo2O4/g‑C3N4复合材料及其制备和应用。所述ZnCo2O4/g‑C3N4复合材料是以石墨相氮化碳g‑C3N4为载体,在其表面均匀负载ZnCo2O4纳米颗粒后得到ZnCo2O4/g‑C3N4复合材料。所述制备方法为:称取一定量g‑C3N4放入乙醇水溶液中,再称取一定量的四水合乙酸钴与二水合乙酸锌加入混合溶液,室温下逐滴加入浓氨水,将所得混合液在60~100℃下剧烈搅拌20h;将反应液转入高压水热反应釜中,放入烘箱在130~170℃下水热反应3h,获得的产物用乙醇和水分别充分洗涤,冷冻干燥得到ZnCo2O4/g‑C3N4复合材料。本发明提供了所述的ZnCo2O4/g‑C3N4复合材料作为催化剂在降解抗生素废水中的应用,所述的抗生素为诺氟沙星。本发明通过构建合适的异质结结构形成高效的ZnCo2O4/g‑C3N4催化材料,降低电子‑空穴对复合率,提高催化效率。
本发明提供了一种碳/镍钴层状双氢氧化物复合材料,按如下方法制备得到:氮气保护下,原料木粉先经碳化处理,再将碳化产物与碱、水均匀混合,混合物加热蒸发掉大部分水后进行活化处理,制得碱活化木碳粉,将其加入氮掺杂溶液中,超声混均后进行水热反应,制得氮掺杂活化木碳粉,将其加入去离子水中,分散后加入镍盐和钴盐的混合溶液,升温搅拌后,加入碱溶液,继续保温搅拌反应,之后反应液经后处理,即得成品;本发明以廉价、环保、可再生、易获得的木材作为原料制备碳材料用于超电容用碳/镍钴层状双氢氧化物复合材料的制作,具有明显的成本优势,且本发明复合材料中碳材料的氮掺杂特征可以增强复合材料稳定性,提高复合材料电容输出能力。
本发明公开了一种具有可见光响应的氮化碳/三氧化二铁纳米复合材料的合成方法及应用,属于复合材料制备技术及光催化领域。本发明为解决现有氮化碳材料比表面积小,光生电子-空穴复合率高,太阳能利用率低等问题。该复合材料是以三聚氰胺和硝酸铁为原料,甲醇为溶剂,通过化学反应法和热处理法获得。制备得到的氮化碳/三氧化二铁纳米复合材料与氮化碳相比,拥有更大的光吸收范围,从紫外光区扩大到可见光区,大大提高了太阳能利用率,同时拥有更大的比表面积,光生电子空穴复合率低,在可见光下能够有效降解罗丹明B.本发明的优点在于制备工艺简单,原料成本价廉,可大规模生产,得到的复合材料比表面积大,太阳能利用率高,催化性能优异,具有良好的应用情景。
本发明公开了一种聚偏氟乙烯/石墨烯复合材料及其制备方法,是氧化石墨烯用还原剂还原,然后将还原后的石墨烯与聚偏氟乙烯在N,N-二甲基乙酰胺溶剂中实现溶液共混,干燥、热压后获得聚偏氟乙烯/石墨烯复合材料。本发明制备的偏氟乙烯/石墨烯复合材料具有以下优点:1)介电常数高,在频率100Hz条件下,当石墨烯重量百分比为0.02时,该聚偏氟乙烯/石墨烯复合材料高达7940;2)柔韧性好。同时本发明中该复合材料的制备方法具有操作简单,石墨烯剥离分散程度高等特点。
本发明以埃洛石为原料或载体,进一步组装类水滑石构建复合材料,同时发挥两种层状材料的协同功效,改进含类水滑石的复合材料的合成方法,并进一步提升天然粘土矿物埃洛石的功能性,充分发挥净化水体环境的能力。本发明制备的埃洛石基类水滑石复合材料具有较好的吸附性能,添加埃洛石可以提高复合材料的吸附性能,所采用的原料埃洛石常见易得、成本低,制备方法设备要求低,便于大规模生产。
本发明公开了一种特高压复合材料用玄武岩纤维制品镀TiN/TiAlSiN复合耐磨涂层技术,其特征在于,包括玄武岩纤维制品、Ti层、TiN层和TiAlSiN层,所述Ti层镀在玄武岩纤维制品表面作为过渡层,所述TiN层与TiAlSiN层交替沉积在Ti过渡层之上。本发明还公开了一种特高压复合材料用玄武岩纤维制品镀TiN/TiAlSiN复合耐磨涂层技术及其制备方法。本发明通过多弧离子镀工艺将Ti单质靶和Ti‑Al‑Si合金靶在玄武岩纤维制品表面沉积以Ti层为过渡层、TiN层和TiAlSiN层交替沉积的复合耐磨涂层。本发明获得的玄武岩纤维制品镀TiN/TiAlSiN复合耐磨涂层技术改变了特高压复合材料用玄武岩纤维制品耐磨性差的缺点,使特高压复合材料用玄武岩纤维制品的耐磨性明显提升,进一步拓宽玄武岩纤维制品的应用领域。
本发明公开了一种磷酸锰矿化药物用于制备纳米药物复合材料的方法,包括以下步骤:将化疗药物加入到含锰溶液中,在一定温度下搅拌一定时间,形成锰‑药物混合溶液;将得到的锰‑药物混合溶液加至基础培养基中,在一定温度的弱碱性条件下进行矿化反应,反应一定时间后离心分离沉淀,即得到所述的磷酸锰矿化药物纳米复合材料。本发明采用仿生矿化策略制备形成磷酸锰矿化药物纳米复合材料,可快速实现锰元素与化疗药物纳米复合制备,条件温和可控,尺寸、形貌均匀。此外,磷酸锰矿化过程不会影响药物后续药效,细胞实验证实本发明提供的磷酸锰矿化药物纳米复合材料具有良好的抑癌潜力。
本发明公开一种用于超级电容器的NiSe2‑Ni2O3纳米结构复合材料及其制备方法。所述纳米材料由直接生长于泡沫镍表面的NiSe2和Ni2O3两相组成,形貌为结构相似的纳米颗粒,在泡沫镍表面密集生长。NiSe2‑Ni2O3纳米复合材料的制备使用泡沫镍直接作为基底材料和镍源,二氧化硒作为硒源,水为溶剂,通过一步水热法在泡沫镍衬底表面合成NiSe2‑Ni2O3纳米材料。使用所述制备材料直接作为超级电容器电极,当电流密度为1 mA cm‑2时,面积比电容值高达2.87 F cm‑2;具有较高的面积比电容和倍率性能,同时制备方法简单,节能环保,成本较低,有利于产业化生产,具有较高的实际应用潜力。
本发明公开了一种阻燃增强耐高温尼龙复合材料,以重量份计,所述阻燃增强耐高温尼龙复合材料的原料包括以下几种:30~45份高温尼龙树脂,30~55份玻璃纤维,10~20份阻燃剂,0.1~2.0份聚乙烯吡咯烷酮。本发明在阻燃增强耐高温尼龙复合材料配方体系中引入聚乙烯吡咯烷酮,能显著提升复合材料的初始白度,制备浅色系产品时,无需添加钛白粉,得到的模制品的初始白度L值>80,制得的模制品具有优异的目视性效果,有利于降低成本;而且成型的模制品表面光滑,有效解决了制品表面浮纤问题。
本发明公开了一种银掺杂海胆形氧化铜/多层石墨烯复合材料及其制备方法。海胆形氧化铜均匀分布在多层石墨烯表面,海胆形氧化铜的直径在100‑200nm。海胆形氧化铜颗粒由纳米氧化铜束组成,氧化铜束从球体中心向外作辐射状分布,氧化铜束之间具有较大的孔隙,液体容易进入到纳米孔中,提高氧化铜的比表面积。同时,海胆氧化铜内沉淀有纳米银,提高了电子在海胆形氧化铜内部的传输速度。本发明制备的复合材料可用于无酶葡萄糖检测电极,具有优良的检测性能。银掺杂海胆形氧化铜/多层石墨烯复合材料的制备过程:超声制备多层石墨烯后,将乙酸铜、硝酸银、稀盐酸加入到DMF和水混合溶液中,在90℃温度下水浴搅拌2小时,经清洗后可获得本发明复合材料。本发明制备工艺简单,适合工业化生产。
本发明属于催化剂技术领域。本发明公开了一种MXene/二氧化钛纳米管复合材料光催化剂,其由MXene材料与二氧化钛纳米管复合制得;本发明还公开了一种MXene/二氧化钛纳米管复合材料光催化剂的制备方法,其包括MXene材料的制备与MXene/二氧化钛纳米管复合材料的制备两个步骤。通过本发明制备的MXene/二氧化钛纳米管复合材料光催化剂由于MXene独特的层状结构,扩大了二氧化钛对光的响应范围,提高了电子‑空穴分离率,使得其在可见光作用下产生更高的光催化活性,在光催化领域有广泛的应用前景。而且本发明提供的合成方法具有工艺简单、耗能少、条件温和及产品形貌好等特点,适合大规模生产应用。
本发明涉及高分子材料领域,为解决目前改性剂石墨烯分散性差、界面粘附力差、材料性能不稳定等问题,本发明提供一种石墨烯原位改性聚内酰胺复合材料及其制备方法,所述的复合材料拉伸强度为60~100MPa,抗冲击强度为90~170J/m,体积磨损率达到1.0~5.0(x10-5mm3N-1m-1)。具有分散性好、相容性好、性能稳定的特性,可以应用在激光选择烧结领域,使得制件尺寸稳定性、抗磨性能以及韧性明显提高。
本发明公开了一种蜂窝状热塑性导热电绝缘复合材料散热结构,包括蜂窝状散热本体,蜂窝状散热本体的蜂窝孔为上下方向竖直设置,所述热塑性导热电绝缘复合材料按重量份计由以下组分混合制成:热塑性树脂50-70份,改性竹纤维15-25份,高导热剂8-15份,介电材料3-10份,偶联剂0.5-1份,交联剂0.4-0.6份,润滑剂0.5-1.5份,抗氧剂0.3-0.8份。本发明具有高导热性、力学性能优异、高电绝缘性、生产成本低,材料更环保易于降解等优点,可应用于LED散热器和电器散热器等产品。
本发明公开了一种轻质高强复合材料,由增强材料浸渍混合液后经层压热固化制得,其中,所述混合液按重量份数计配比为:环氧树脂125份,溶剂35.0~80.0份,固化剂2.5~35份,促进剂0.01~0.50份,偶联剂0.5~5份,表面活性剂0.05~0.1份,空心玻璃微球5~50份;所述增强材料为电子级玻璃纤维布。还公开了上述复合材料的制备方法。本技术方案配方简单、可直接混合加工并具有质轻、强度高的优点。
本发明公开了一种硅碳复合材料及其制备方法和应用。所述硅碳复合材料是以粒径尺寸介于1‑10um的碳球为载体,硅纳米颗粒在碳球表面均匀分布。所述的硅碳复合材料的制备方法,包括如下步骤:1)将一定比例的氨基化硅纳米颗粒和甲阶段酚醛树脂分散在水和乙醇的混合溶剂中,加入酸催化剂,在130‑180℃溶剂热反应2‑10h,得到硅/酚醛树脂球复合材料;2)步骤1)得到的硅/酚醛树脂球复合材料在惰性气氛中煅烧得到硅碳复合材料。本发明提供了所述的硅碳复合材料作为锂离子电池负极材料的应用。本发明的硅碳复合材料中硅能提供储锂容量,碳球则作为支撑骨架和导电网络,作为锂离子电池负极材料应用,首次库伦效率高,循环稳定性好。
一种纳米片状偏钨酸铵、CNT支撑的纳米片状氧化钨载钯复合材料及其应用,该纳米片状偏钨酸铵的制备方法包括:先配制质量分数为3~16wt%的硝酸铁水溶液,再加入碳酸铵形成絮状体混合溶液,搅拌均匀后再加入偏钨酸铵,继续搅拌至偏钨酸铵完全溶解后将得到的絮状体混合溶液移入培养皿中进行静置自组装培养直至干燥,得到纳米片状偏钨酸铵。将纳米片状偏钨酸铵经气固反应还原碳化,得到CNT支撑的纳米片状WC复合材料,然后利用该复合材料中被还原的金属铁去置换含钯的溶液中的钯得到载钯的复合材料,再通过氧化煅烧即得到CNT支撑的纳米片状氧化钨载钯复合材料。本发明提供了所述CNT支撑的纳米片状氧化钨载钯复合材料作为催化剂在乙醇燃料电池中的应用。
本发明公开一种氧化铁纳米颗粒/片状氢氧化铁/多层石墨烯复合材料及制备方法,该复合材料中,以超声法制备的多层石墨烯为基底,在其表面生长了片状氢氧化铁,片状氢氧化铁形成多孔结构,纳米氧化铁均匀得分布在多层石墨烯和片状氢氧化铁表面。复合材料中多层石墨烯能很好的改善复合材料的导电性,片状氢氧化铁中的羟基具有强的多硫化物吸附能力,片状氢氧化铁形成的多孔结构能吸附更多的硫。纳米氧化铁颗粒增加了氢氧化铁的导电性能并且增加了复合材料的比表面积。该复合材料适用于构建高性能的锂硫电池正极。
本发明公开的用于电加热和过热保护的复合材料,其组分及其重量百分比含量:碳纳米管4~7%,高密度聚乙烯96~93%。制备采用熔融共混法,步骤如下:按比例称取碳纳米管粉末及高密度聚乙烯颗粒,于140℃~170℃下均匀混合后放入模具中,先在165℃~180℃下预热5~20分钟,随后在5~20MPa及10~30 MPa压力下各压制5~20分钟,脱膜,冷却到室温。本发明的复合材料以高密度聚乙烯为基体,碳纳米管为添加剂,具有比碳黑添加量低,不会破坏基体材料连续性的优点,该复合材料具有良好的PTC性能,既有电加热和过热保护功能,又有限温作用。同时该材料制备工艺简单,操作方便,重复性好,适于大规模工业化生产。
本发明公开了一种核壳结构多孔硅/碳复合材料的制备方法和应用。所述制备方法包括如下步骤:(1)在硅‑金属合金表面包覆一层形状规则、厚度均匀的碳层,得到碳包覆的硅‑金属合金;所述硅‑金属合金为硅铝、硅铁、硅锡、硅锌中的一种或多种,硅‑金属合金的粒径为1‑10μm,其中硅的有效含量为20‑80%;(2)将碳包覆的硅‑金属合金依次进行酸刻蚀处理和碱刻蚀扩孔处理,即得到具有空腔的核壳结构多孔硅/碳复合材料。本发明提供了制备得到的核壳结构多孔硅/碳复合材料作为锂离子电池负极材料的应用。本发明的核壳结构多孔硅/碳复合材料作为负极材料用于锂离子电池时表现出较高的首次库伦效率和比容量,同时具有较好的循环稳定性和倍率性能。
本发明公开一种具有高透明度的多功能性聚乳酸纳米复合材料及其制备方法。包括聚乳酸、勃姆石纳米棒。多功能性聚乳酸纳米复合材料包括聚乳酸、改性后勃姆石纳米棒;所述的改性后勃姆石纳米棒表面修饰有环氧基团,通过开环反应接枝聚乳酸分子链。本发明中聚乳酸纳米复合材料兼具良好的光学性能,力学性能,耐热性以及阻燃性能。高填充的纳米棒导致聚乳酸基体中的结晶空间受限,虽然纳米棒的引入促进了聚乳酸的成核,但是聚乳酸晶体的生长受到抑制,保持材料的高透明性,而纳米棒的加入增强了聚乳酸纳米复合材料的模量,且大大提高了延展性和韧性,进一步提高了材料的耐热性,在高温下有一定的尺寸稳定性。
本发明公开了一种四氧化三铁/氧化硅/多层石墨烯复合材料及制备方法,该复合材料中多层石墨烯为碳基底材料,由膨胀石墨经机械剥离获得,厚度小于10nm,具有平整的表面。四氧化三铁和氧化硅在多层石墨烯表面形成复合薄膜,四氧化三铁和氧化硅在复合膜中相互隔离,均匀分布,膜层的厚度小于10nm。该四氧化三铁/氧化硅/多层石墨烯复合材料的具体制备过程为:将膨胀石墨放入DMF与水的混合溶液,经机械剥离后获得多层石墨烯分散液;称取无水乙酸钠、氯化亚铁和正硅酸乙酯,加入多层石墨烯分散液;放入水浴中搅拌,随后水浴中室温升温至90℃,升温时间为15分钟;反应一定时间后取出,离心清洗后获得本发明四氧化三铁/氧化硅/多层石墨烯复合材料。本发明制备工艺简单,适合工业化生产。
本发明涉及一种具备CVD膜的高纯度碳/碳复合材料的制备方法,包括如下步骤:1制成具有高度取向的圆锥体C/C复合材料的预成型胚体;2将步骤1得到的增强骨架真空浸渍苯并噁嗪树脂溶液并制成所需的形状;3将经过步骤2处理得到的预浸料在氮气保护下进行加压炭化;再浸渍耐高温Econol树脂溶液填充空隙,之后进行化学气相沉积CVD;4石墨化处理;5将步骤4得到的致密的碳/碳复合制品进行水蒸气活化,活化完毕后在惰性气体保护下冷却得到具备CVD膜的高纯度碳/碳复合材料,具备CVD膜的高纯度碳/碳复合材料的密度大于2.58g/cm3,拉伸强度达900MPa以上,热导率为450-480W/(m·K),热扩散率为3.3cm2/s。
本发明公开了一种水滑石-五氧化二锑复合材料及其制备方法。一种水滑石-五氧化二锑复合材料,由层状双金属氧化物和五氧化二锑微粒组成,五氧化二锑微粒的粒径在500nm以下,且均匀分布于水滑石的层间。制备方法首先将硫锑酸根插层进入普通水滑石层间,煅烧分解后利用无机铵盐使水滑石结构还原,从而得到层间均匀分布了五氧化二锑的水滑石纳米复合材料。本发明制得的水滑石-五氧化二锑复合材料综合了水滑石及锑类化合物优异的性能,在阻燃剂、热稳定剂、催化剂等领域具有极佳的应用前景。其原料来源广泛,工艺流程和原理简单,设备投资少,运行成本低廉,为综合利用我国富藏的含锑矿物及开发新型的阻燃剂和热稳定剂提供了新的途径。
中冶有色为您提供最新的浙江杭州有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!