本发明公开了一种Co2AlO4材料及其制备方法和应用,Co2AlO4材料的制备方法包括如下步骤:将混合均匀的钴元素与铝元素的摩尔比为2 : 1的前驱体材料,经固相烧结,制备得到所述Co2AlO4负极材料。本发明的方法成本低,是一种合成周期短、合成条件易控制、合成方法简单、易于实现大规模生产的制备方法,采用本发明方法制备的Co2AlO4作为锂离子电池的负极材料具有十分优异的电化学性能。
本发明公开了一种重质碳酸锰的制备方法,是以固体工业硫酸锰或金属锰粉为原料,经溶解、净化、调pH值得到纯净的硫酸锰溶液;将纯净硫酸锰溶液和纯净碳酸氢铵溶液反应,通过调节溶液的pH值和控制沉淀反应时间,得到锰含量大于45%、振实密度大于2.4g/cm3的重质碳酸锰产品。本发明可广泛用于磁性材料、陶瓷、玻璃、脱硫的催化剂、瓷釉颜料、清漆催干剂和其它锰盐的制造以及新型电池材料的制备,尤其是用于化学二氧化锰和锂离子电池正极材料锰酸锂的生产。
本发明公开了一种亚微米级LiNi0.5Mn0.5O2正极材料的制备方法,取可溶性镍盐和锰盐,分别配制镍盐水溶液和锰盐水溶液混合;配制与金属离子溶液等体积的氢氧化钠溶液,加入氨水作为沉淀剂溶液,将所述金属离子混合溶液和沉淀剂溶液并流滴加到表面活性剂水溶液中,搅拌均匀,控制沉淀反应温度为55℃,滴加完全后继续高速搅,静置,抽滤,冲洗,干燥,研磨得到粉末,加入氢氧化锂,球磨后得到前驱体;将前驱体按如下工艺进行热处理:先以2~12℃/min升温至350~450℃进行预处理2~6h,然后继续以2~12℃/min升温至700~1000℃煅烧8~20h,再以2~12℃/min降温至300~500℃退火2~4h。本发明通过将表面活性剂引入优化后的共沉淀法中制备LiNi0.5Mn0.5O2正极材料,获得了亚微米级,分散均匀,无明显团聚的类球状LiNi0.5Mn0.5O2材料,该材料颗粒分散均匀,粒径约80~200nm,呈类球状,具有较高的放电比容量和优异的循环稳定性能。??
本发明属于锂离子电池回收技术领域,具体涉及一种构筑原电池效应的还原碱浸回收工艺。一种构筑原电池效应的还原碱浸回收工艺,是在给定碱性环境下引入还原性的金属粉末作为原电池负极,而待还原的废旧正极材料构成原电池正极,实现氧化还原反应。本发明利用原电池效应提供的还原效果,替代常见的火法预处理过程,有效地简化了碱性浸出体系,实现全湿法工艺过程回收废旧锂离子电池正极材料。
本发明公开了一种夹心式固态复合电解质膜及其制备方法和应用,该电解质膜由复合电解质渗透到微孔隔膜中构成,其中复合电解质由高分子聚合物材料、锂盐和离子液体组成,或由无机固态电解质粉体、高分子聚合物材料、锂盐和离子液体组成。其制备方法包括将原料制成浆料,涂覆在微孔隔膜的两个面上。本发明电解质膜具备较好的热稳定性和电化学稳定性,较高的离子迁移数、离子电导率和安全性、易成型加工、优异的力学性能等优势,是一种性能优异的新型固态复合电解质膜,可用于构建比容量高、循环稳定性好、安全性好的固态电池,使用价值高,应用前景好。本发明电解质膜的制备方法具有工艺简单、可连续生产等优点,适合于大规模制备,便于工业化应用。
本发明公开了一种改性高电压正极材料及其制备方法和应用,包括高电压正极材料内核及包覆在所述高电压正极材料内核表面的尖晶石相层,所述尖晶石相层的表面设有碳层。其制备方法包括:将碳源、硅烷偶联剂、碱性锂盐、高电压正极材料与水混合,经过水热处理和热处理,得到改性高电压正极材料。本发明的改性高电压正极材料具有表面结构稳定、高电导率、倍率性能优异等优点,可广泛应用于制备锂离子电池或钠/钾离子电池,应用前景好。
本发明提供了一种磷酸铁的制备方法,包括以下步骤:将铁盐在酸性条件下与多氨基化合物混合,得到第一混合溶液;将磷源、多羟基醇与水混合,得到第二混合溶液;将所述第一混合溶液与所述第二混合溶液混合,进行水热反应,得到水合磷酸铁;将所述水合磷酸铁进行煅烧,得到磷酸铁。本发明利用多氨基化合物络合铁盐中的铁离子,诱导磷酸铁定向生长成纳米片状结构基元,释放氨基;利用多氨基化合物运输磷酸铁纳米结构基元与多羟基醇结合,进行架桥,并采用水热法制备得到了具有放射状有序多孔道结构的磷酸铁,显著增加锂源浸润通道,降低了高温固相反应过程中离子向材料中心迁移的阻力,从而提高了磷酸铁锂的电化学性能。
放射状类球顶锥体结构三元前驱体及正极材料和制备方法,所述三元前驱体的锥体部为呈放射状生长的长条状一次颗粒,球顶部为有序堆积的块状一次颗粒,并形成二次团聚体;所述三元前驱体的化学式为NixCoyMn(1‑x‑y)(OH)2,其中,0.3<x<0.9,0.05<y<0.50,0.05<1‑x‑y<0.50。本发明还公开了放射状类球顶锥体结构三元前驱体的制备方法及正极材料和制备方法。本发明三元前驱体及正极材料形貌规则,分布均匀,有利于在充放电过程中锂离子的运输,放电比容量、充放电性能和库伦效率稳定,循环性能好。本发明方法工艺简单,反应温度低,原材料成本低,适宜于工业化生产。
本发明提供一种阳离子与氟阴离子双掺杂改性三元正极材料,其化学式为LiNi1‑x‑y‑αCoxMnyMαO2‑βFβ,0≤x≤0.4,0≤y≤0.4,0.6≤1‑x‑y‑α≤1,0≤α≤0.05,0≤β≤6α;其中M为掺杂阳离子,其外壳层具有d0电子构型。本发明提供的阳离子与氟阴离子双掺杂改性三元正极材料,解决了高镍正极材料锂镍混排的问题,以及正极材料在脱锂状态下晶格氧容易被氧化的问题,提高了材料的结构稳定性和循环稳定性,从而提高了正极材料的电化学性能。本发明还提供一种阳离子与氟阴离子双掺杂改性三元正极材料的制备方法。
一种高性能铜箔的单机架可逆深冷叠轧分离制备方法,将铜箔一端安装到卷取机一上,另一端依次经过左侧导辊、异步轧机、右侧导辊安装到卷曲机二上,卷取机一和卷取机二分别放置在温度为‑192℃~‑100℃的深冷箱中;开启卷取机,使带材形成张力;开启异步轧机机组进行深冷轧制;采用液压装置逐渐增加异步轧机的辊间压力,使轧辊成为负辊缝运行,直到整卷铜箔被轧制完成;转换轧制方向,调换轧机上下辊轧制异速比,重复2‑6次,制备出厚度≤5μm的高导电性能、高强度铜箔产品,铜箔的抗拉强度超过500MPa,该极薄铜箔在锂电池、电子、能源、航天和军事等产业的发展意义重大。
本发明公开了一种辊道窑分区断辊检测方法及其系统,属于锂电池材料烧结领域。包括在任一辊棒从动侧下方能感应随动原件的感应区域内各设置两个感应开关,分别记为第一感应开关和第二感应开关;搭建串联电路将分区内的所有第一感应开关串联,搭建并联电路将分区内的所有第二感应开关并联;同时检测串联电路和并联电路的通断是否呈周期性变化;当检测到任一分区串联电路或并联电路的通断呈非周期性变化时,判断该分区断辊。在此检测方法的基础上建立对应的检测系统,从而及时准确的报警并反馈断辊所在分区,便于维修人员及时到断辊所在分区找出并更换断辊,同时便于实现多条辊道窑辊棒的整体监控,提高了整体运作效率。
本实用新型公开了一种太阳能路灯并网发电装置及太阳能路灯系统,所述的太阳能路灯包括锂电池、灯杆(1)、发光模块(2)和光伏模块(3);灯杆顶部设有用于发电的风机模块(4);风机模块依次通过整流器和DC/DC模块接24V直流母线;光伏模块通过DC/DC模块接24V直流母线;24V直流母线通过逆变并网模块与交流电网相连;24V直流母线通过DC/DC模块接锂电池;所述的DC/DC模块和逆变并网模块均受控于控制器;所述的控制器为MCU。该太阳能路灯并网发电装置及太阳能路灯系统功能丰富,易于实施,节能环保。
本实用新型属于吸收式制冷制热技术领域,涉及一种使用多种能源的发生器。该使用多种能源的发生器包括发生器筒体、炉膛、燃烧机,在发生器筒体内的溴化锂溶液,在含有溴化锂溶液的容器内有余热发生器,该余热发生器与外部的提供蒸汽或热水的供热管道连接。本实用新型能充分有效利用企业生产过程中大量多余的蒸汽、热水,发生器需要的能源不足部分由燃料通过燃烧机来提供,既可达到节能增效,又能保证空调正常运行。
本发明公开了一种集中供电亮化系统,包括市电供电支路、清洁能源供电支路、MOS管、LED灯串、脉冲调光电路和控制器;市电供电支路通过开关K2接MOS管的供电端,清洁能源供电支路通过开关K1接MOS管的供电端;脉冲输出电路输出脉冲到MOS管的控制端;脉冲输出电路受控于控制器;MOS管的输出端接LED灯串的供电端;市电供电支路包括变压器和整流器,变压器的原边接220V市电。清洁能源供电支路包括锂电池、充电电路‘变流器、太阳能板和风力机;风力机经变流器输出直流电到充电电路;太阳能板直接与充电电路相接,充电电路用于为锂电池充电。该集中供电亮化系统集成度高,功能丰富。
本发明提供了废动力电池粉的回收处理方法。该处理方法中,还原焙烧处理为动态还原焙烧工艺,对电池粉的处理更加彻底,将锂的回收率提高了约10%,还原的镍、钴、锰都由高价态变成低价态也更彻底,后续浸出过程中基本不消耗还原剂,镍回收时,无需采用萃取的方式回收,此外,本发明的回收处理方法,以动态还原工艺为起点,锂的回收经济并且高效,钴锰的回收过程中考虑了对镍回收的影响,采用了镍皂化,镍的回收成本低。
本发明属于锂离子电池材料领域,具体公开了一种多孔氧化亚硅复合材料,包括内核,复合在内核表面的中间层,以及复合在中间层表面的外层;其中,内核为硅;中间层为氧化亚硅及分散在氧化亚硅中的金属M的硅酸盐;外层为碳包覆层;金属M为能将硅氧化物还原的金属元素。本发明还提供了所述的复合材料的制备方法,以及在用作锂离子二次电池的负极活性材料中的应用。本发明研究发现,所述的复合材料,具有循环寿命长、首次效率高等特点。
本发明公开了一种艾乐替尼的合成方法。该方法将6?溴?3,4?二氢?2?萘酮先后与正丁基锂和有机硼试剂进行硼酸化反应,将得到的3,4?二氢?2?萘酮?6?硼酸与溴乙烷进行催化偶联反应;将得到的6?乙基?3,4?二氢?2?萘酮与碘甲烷进行双甲基化反应;将得到的1,1?二甲基?6?乙基?3,4?二氢?2?萘酮与溴化试剂进行溴化反应;将得到的1,1?二甲基?6?乙基?7?溴?3,4?二氢?2?萘酮与4?(4?哌啶基)吗啉进行取代反应;将得到的1,1?二甲基?6?乙基?7?[4?(吗啉?4?基)哌啶?1?基]?3,4?二氢?2?萘酮与3?氰基苯肼进行环化反应;将得到的9?乙基?6,6?二甲基?8?[4?(吗啉?4?基)哌啶?1?基]?6,11?二氢?5H?苯并[b]咔唑?3?甲腈与二氯二氰基苯醌进行氧化反应,得到成品艾乐替尼。该合成方法路线步骤较短,操作简化,成本较低,是一种绿色环保方法,适用于工业化生产。
本发明涉及高纯一氧化锰的制备方法,包括以下步骤:将金属锰片与二氧化锰混合后进行粉磨;得到的粉磨料置于气氛炉中,向气氛炉中通入保护性气体,将炉中空气赶出,将气氛炉升温,在气氛炉温度达到500℃~690℃时,进入恒温焙烧阶段,恒温焙烧一段时间;恒温焙烧结束后,继续通入保护性气体,并在炉内对物料进行自然冷却;当炉内物料温度降低后,将物料从炉膛内取出进行研磨,即可得到高纯一氧化锰。本发明制备工艺简单,易于操作,原料成本低廉,原料充足,原料杂质含量低;本工艺生产成本低,易于实现工业化规模生产。本发明制备的一氧化锰纯度高,一氧化锰的化学成份和物理性能均可满足锂离子电池材料锰酸锂化学成份和物理性能的要求。
本发明公开了一种复合固态电解质及其制备方法和应用。一种复合固态电解质,制备原料包括碳化铌纳米片和聚氧化乙烯(PEO),所述复合固态电解质用于锂硫电池。本发明的复合固态电解质,通过碳化铌纳米片和聚氧化乙烯之间的协同作用,能够提升PEO作为固态电解质时的离子电导率和机械强度,也可有效抑制锂硫电池中的穿梭效应。
本发明公开了一种三维多孔石墨烯纳米材料及其制备方法和应用,该三维多孔石墨烯纳米材料为由层状石墨烯构成的三维多孔导电网络结构,三维多孔导电网络结构中大孔的孔径为50nm~500nm。其制备方法包括制备先驱体‑催化剂混合物、制备石墨烯包覆无机物纳米球复合材料和去除材料中的无机物纳米球和杂质。本发明的三维多孔石墨烯纳米材料不仅具有快速传导的三维导电网络,具有良好的导电性,且具有丰富的分级孔结构、高的比表面积和孔体积,尤其具有丰富且均匀分布的介孔或大孔结构,其制备方法具有简单方便、原位催化生长石墨烯效果好等优点。本发明的石墨烯材料在超级电容器、锂离子电池、锂硫电池等新能源器件有广泛的应用前景。
本发明实施例提供了一种一步法连续合成高活性球型羟基氧化锰的生产工艺,该生产工艺制备得到的球型羟基氧化锰的粒径分布可控制在3~30μm,能够提高锰酸锂的压实密度,球形度佳,电化学性能的循环和容量高,振实密度大,提高了锰酸锂单位体积的能量密度。
本发明涉及一种高纯电池级磷酸铁超声波生产方法。包括以下步骤:在反应釜中将铁源、酸性化合物、表面活性剂混合制得浓度0.5-6mol/L的溶液A,将磷酸盐、氧化剂混合制得0.5-6mol/L的溶液B加入反应釜中与A溶液进行升温,并引入超声波手段,反应一段时间后,加入磷酸或磷酸与其它酸的混酸进行转型晶化数小时直至混合液颜色变成乳白色,然后过滤、洗涤、烘干、粉碎即可制得电池级磷酸铁产品。该超声波合成方法具有产品收率高、铁磷比达到0.96-1.00、粒径均匀可控(D50≤15um)、比表面30.0-85.0m2/g、杂质含量低、结晶度好等优点,是用于制造锂离子电池磷酸铁锂正极材料的理想原材料。
本发明涉及一种酶催化制备L‑天冬氨酸(2,3,3‑D3)的方法,其步骤如下:(1)依次将L‑天冬氨酸或其盐、α‑酮戊二酸(或α‑酮戊二酸钠)置于三口瓶中,氩气氛下油泵置换三次,然后在氩气氛下加入氘水,用氘氧化钠溶液/碳酸锂氘水溶液/无水三乙胺调节反应液pD值为8.0‑9.0,在32‑42℃下保温,然后加入谷草转氨酶20‑100U,保温1‑5天;(2)将上述反应液用微孔滤膜过滤,减压蒸去大部分氘水并回收,然后调节pH值至2.5‑3.0,静置冷却结晶,过滤干燥,得到产品。本发明具有的优点为直接采用廉价的氨基酸为底物,氘水为氘源,直接得到手性的L‑天冬氨酸(2,3,3‑D3)纯品。
本发明公开了一种双碳层包覆氧化锰复合材料的制备方法,属于锂离子电池负极材料领域,包括:采用共沉淀法合成球形碳酸锰,在其表面包覆一层碳源,在惰性气氛中进行烧结处理,得到前驱体;将前驱体放入盐酸溶液中,分散均匀后,在真空条件下对前驱体内部氧化锰颗粒包覆一层碳源,然后在惰性气氛下进行热处理,得到双碳层包覆氧化锰复合材料。本发明利用碳酸锰在特定气氛与温度下热处理制备纳米氧化锰颗粒,材料纳米化可以缓解氧化锰负极材料导电性差以及体积膨胀的问题,提高该负极材料的电化学性能;本发明利用两层碳作为保护层减少氧化锰在长期循环过程中造成的活性物质的损失,同时缓解脱嵌锂过程中的体积膨胀,提高复合材料的电化学性能。
本发明提供无水磷酸铁的制备方法,该制备方法包括以下步骤:S1:将磷酸铁锂物料与酸液、氧化剂混合,加热;S2:过滤取滤渣,洗涤,干燥。本发明实施例的无水磷酸铁的制备方法至少具有如下有益效果:本方案改变进料方式,以酸液作为浸出剂,同时加入氧化剂,使磷酸铁锂在加热条件下通过一步法直接反应生成具有异磷铁锰矿结构的无水磷酸铁产品。产物具有较好的电化学性能,能够有效地参与后续生产流程。整个方法工艺简单、条件温和。
本发明公开了一种长循环高倍率石墨负极材料及其制备方法和应用,该材料的制备方法包括以下步骤:将粘结剂进行破碎,与导电剂混合,熔融造粒,破碎,所得融合物与人造石墨混合,机械融合,炭化,在炭化产物表面沉积人造固体电解质界面膜,得到长循环高倍率石墨负极材料。本发明中,人造固体电解质界面膜能够有效阻止电解液与人造石墨的直接接触,以及抑制无定形碳包覆层的破裂,且通过直接与导电剂接触,提高了石墨负极材料的导电性能,改善了人造石墨的倍率和循环性能,获得了容量高、循环性能好、倍率性能好的长循环高倍率石墨负极材料,用于制备锂离子电池时,能够显著提高锂离子电池的循环寿命,有着很高的使用价值和很好的应用前景。
本发明属于锂离子电池材料技术领域,具体公开了一种高镍正极材料及其制备方法。本发明提供的高镍正极材料具有内核、中间层和外壳三层结构,内核的颗粒均匀分散,中间层呈放射状分布,粒子强度≥60MPa。本发明所述的高镍正极材料的前驱体的制备方法,包括共沉淀反应、第一阶段的生长反应和第二阶段的生长反应三个反应阶段。主要通过调控每个阶段的不同的反应条件,主要是pH、搅拌速度、温度等,形成不同结构。所述前驱体与锂盐及含M的化合物混合烧结后,可以形成一次颗粒均匀分散的核心层和一次颗粒放射状分布的外层,提高粒子强度。
一种Fe-Si-C陶瓷先驱体的合成方法,包括以下步骤:(1)将系统抽真空,惰性气体置换至常压,取二茂铁锂盐,加入无水有机溶剂,得组分a;(2)取两官能度含有卤素基团的有机硅烷化合物溶于无水有机溶剂中,加入组分a反应,得组分b;(3)取三官能度含有卤素基团的有机硅烷化合物溶于无水有机溶剂中,加入组分b反应,得组分c;(4)在组分c中加入质子性溶剂终止反应,过滤,滤液浓缩后滴加到质子性溶剂中,过滤,收集滤渣,清洗,真空干燥,得高支化聚二茂铁基硅烷,即Fe-Si-C陶瓷先驱体。本发明方法所制得的Fe-Si-C陶瓷先驱体分子组成与结构可控,产率高,溶解性好,陶瓷产率高,可以作为理想的陶瓷先驱体。
中冶有色为您提供最新的湖南长沙有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!