本实用新型涉及一种锂电池换胶模块及锂电池贴胶装置。该锂电池换胶模块包括主机架和固定在主机架上的换胶组件,换胶组件包括固定在主机架上的副机架和固定在副机架上的可旋转释放胶带卷的胶带辊、用于输送胶带的输送辊以及对经输送辊输送后的胶带进行扣压的压胶机构,锂电池换胶模块包括至少两套换胶组件,主机架上设有用于压紧副机架以将所述换胶组件锁紧的快换锁紧机构。锂电池贴胶装置包括上述的锂电池换胶模块。上述技术方案解决了现有技术中锂电池贴胶装置换胶效率低的技术问题。
本发明公开了一种利用锂源提锂废液生产氟化钠的方法及生产氟化钠联产氟硅酸钾的方法。生产氟化钠的方法包括:将锂源提锂粗品加水制成料浆后过滤得提锂废液;将提锂废液或提锂废液浓缩液中加入络合剂反应得混合物;按照Na+与HF的摩尔比为1 : 1.05~1.1的比例向混合物中加入HF反应制得氟化钠料浆,过滤得氟化钠产品。将氟化钠料浆过滤所得滤液中加入氟硅酸反应制得氟硅酸钾料浆,过滤得氟硅酸钾产品。本发明的方法以锂源提锂废液为原料,将锂源伴生的金属离子转化为高品质和高附加值的氟化物,提高了锂源伴生资源的利用率,防止资源的浪费,节约了生产成本;减少了提锂废液的排放,具有良好的经济效益和环境效益。
本发明提供了一种具有预锂化效应的高能量密度锂离子电池及其制备方法,所述高能量密度锂离子电池以含有至少一个S‑S键的有机硫化物作为预锂化材料,通过分子中S‑S键的断裂与键合来进行存储和释放锂离子,具有较高的储锂容量。本发明通过制备包含富锂化有机硫化物的正极极片,提高了锂离子电池正极首次脱锂容量,弥补了锂离子电池首次充放电负极SEI膜形成过程中锂离子不可逆的消耗,提高了锂离子电池首次充放电库伦效率和能量密度。本发明中包含该材料制备的正极极片具有预锂化效应,且作为预锂化试剂的有机硫化物材料不含贵金属价格低廉、环境友好可再生,对电池制备环境要求不苛刻易于实现工业化,是一种在锂离子电池中具有良好应用前景的材料。
本发明涉及一种金属锂负极及其制备方法和锂电池。该金属锂负极包括金属锂或金属锂合金形成的活性物质层,活性物质层的一侧表面上由内向外依次复合有混合电导材料层和固态电解质层,所述混合电导材料层含有混合电导材料,混合电导材料为天然石墨、人造石墨、软碳、硬碳、硅碳、硅、氧化亚硅、钛酸锂中的至少一种。该金属锂负极,位于内层的混合电导材料层通过提供金属锂沉积空间而缓解金属锂负极在电化学反应过程中的体积膨胀;位于外层的固态电解质层起到离子导体保护层的作用,与内层的混合导电材料层协同进一步抑制锂枝晶的生长,减少电化学极化,进而提高金属锂负极在电池中的电化学性能表现。
本发明涉及一种功能聚合物、锂电池用聚合物电解质及制备方法、聚合物电解质膜、锂离子电池,属于锂离子电池技术领域。本发明的功能聚合物包括结构单元构成的聚合链,在两聚合链之间连接有膜支撑基团,膜支撑基团的两端分别连接在对应的结构单元的1号位或2号位上;聚合链结构单元的1号位或2号位上连接有锂离子传导基团;锂离子传导基团与膜支撑基团分别连接在各自独立的结构单元的1号位或2号位上;锂离子传导基团与膜支撑基团的摩尔比为1:(1~2);锂离子传导基团的数量为30~300。本发明中膜支撑基团使得功能聚合物具有良好的机械性能。本发明的锂电池用聚合物电解质具有室温电导率高、机械强度强的优点。
本发明属于锂离子电池技术领域,具体涉及一种用于低温倍率放电的复合磷酸铁锂材料、正极片及锂离子电池。本发明的用于低温倍率放电的复合磷酸铁锂材料由以下质量百分比的组分混合后在保护气氛下烧结而成:导电碳5~10%,磷酸铁锂70~80%,锰酸锂10~25%。本发明通过烧结使得导电碳、磷酸铁锂以及锰酸锂三种材料之间的相互作用增强,降低了锂离子迁移阻力,提高了复合磷酸铁锂材料的低温倍率性能。
本发明是有关于一种高倍率锂离子电池的镍锰酸锂正极材料的制备方法,包括如下步骤:分别配制锰源化合物溶液和碳酸盐溶液;将所述碳酸盐溶液加入到所述锰源化合物溶液中,得到球形MnCO3沉淀;将所述球形MnCO3沉淀在温度为300-500℃的空气气氛下,热分解1-10小时;将热分解后得到的球形MnO2与锂源化合物和镍源化合物加入到溶剂a中混合,干燥,研磨得到前驱粉体;将所述前驱粉体烧结,得到所述镍锰酸锂正极材料。本发明提供的技术方案具有成本低,工艺路线简单,能耗低,适合于工业化量产等优点。
本发明提供一种半湿法制备磷酸亚铁锂的方法, 其步骤如下:在含Li、Fe、P的化合物中任取一种不溶于水的, 其他为可溶于水的;将上述将不溶于水的化合物放入上述可溶 于水的化合物溶液中制成悬浊液;悬浊液中含锂、铁、磷符合 下式:[mLi+n(1-m)/n M]∶pFe∶ qPO4=1∶1∶1(1),(1)式中n是 掺杂元素M的化合价,m是Li的摩尔数,(1-m)/n是掺杂元 素M的摩尔数,p和q分别是Fe和 PO4的摩尔数;加入还原导电添 加剂;喷雾热解悬浊液制得前驱体粉末;焙烧前驱体粉末、粉 碎得产品。本发明工艺简单、适宜工业化连续化生产,所制备 的磷酸亚铁锂质量稳定,其晶粒为纳米级,其团聚的颗粒尺寸 在10μm以下。采用本发明组装的锂离子电池有较高容量、有 较好的高倍率放电性能和循环性能。
本发明公开了一种锂离子电池负极片、制备方法及应用、锂离子电池,属于锂二次电池技术领域。该负极片由包括以下步骤的方法制备:惰性气氛中,采用静电纺丝技术将含有锂化合物的溶液均布在负极片表面,干燥,即得。本发明采用静电纺丝技术在负极片表面“湿法补锂”,能将含锂化合物均布在负极片表面,形成纤维状、具较大比表面积和孔洞结构的锂带,相较现有的以喷洒或滴加方式补锂,能实现均匀补锂,并达到补锂量精准、可控的有益效果,有效避免负极片析锂或变形。
本发明涉及一种固态锂电池用双功能界面修饰层及锂电池,所述双功能界面修饰层包括聚合物电解质层及锂合金层,聚合物电解质层用于和锂电池的电解质接触,锂合金层用于和锂电池的锂负极接触;所述锂合金层中的锂合金至少包括含锂二组分合金、含锂三组分合金、含锂四组分合金中的一种;聚合物电解质层包括聚合物基体和锂盐。本发明提供了一种双功能界面修饰层,该双功能界面修饰层可应用于固态锂金属电池中,能够显著提升电解质/锂负极的界面兼容性,抑制锂枝晶的生长,且制备方法简便,容易操作。
本发明公开了一种锂电池补锂陶瓷隔膜及其制备方法,用于锂离子电池制造。补锂陶瓷隔膜是将混合好的锂粉陶瓷胶液在惰性气体环境下涂布于基膜的一侧表面,在40~90℃的烘箱内烘干后即得到补锂陶瓷隔膜。该补锂方法操作简单,安全高效,避免了金属锂被氧化的风险。组装成锂离子电池时,本发明补锂陶瓷隔膜中的涂层面面向锂离子电池负极极片的一侧,首次充电时,隔膜上的补锂陶瓷涂层中的锂粉能够脱嵌出锂离子,补充负极形成SEI膜损失的Li+,提高锂电池的首次充放电效率以及电芯循环性能;陶瓷颗粒能够增强锂电池隔膜的耐热性,降低隔膜的热收缩性,从而更有效地减少因电池内部短路而引起的电池热失控。
蒽醌在锂氧电池中的应用及其得到的蒽醌锂氧电池,属于锂氧气电池领域,所述锂氧电池的组装过程如下:选用锂为负极,负载有碳或四氧化三钴的基底为正极,正极和负极之间被隔膜隔开,组装好后并进行封装,即得;所述基底为不锈钢基底或碳纸,电极面积是1 cm2,所述隔膜上浸渗有溶有蒽醌的电解质。本发明采用蒽醌分子捕获并稳定超氧化锂,在电解质中形成稳定的蒽醌‑超氧化锂中间体,使锂氧气电池正极的氧还原活性提高了10倍;在使用不同碳和金属氧化物为正极组装的锂空气电池中,蒽醌的存在使电池容量提高3倍以上,是迄今为止最先进的可溶性氧化还原介质。
本发明涉及一种钛酸锂镧复合材料及其制备方法、锂离子固态电池。钛酸锂镧复合材料由反钙态矿结构的Li3OX和钙态矿结构的钛酸锂镧复合而成,Li3OX分布在钛酸锂镧晶粒间的晶界处并部分扩散至钛酸锂镧的晶粒内;所述钛酸锂镧的化学式为Li3xLa2/3‑xTiO3,0<x<0.16;Li3OX中,X为卤素。本发明的钛酸锂镧复合材料,利用富锂相、低熔点的Li3OX对LLTO进行阳离子补充,改变了晶粒内部的载流子或阳离子空位的无序度,提高了晶粒内部离子电导,补偿了晶界处空间电荷层内载流子的消耗,有效的提高晶界和整体离子电导率。
本发明涉及一种锂离子电池水性正极复合集流体、正极片及其制备方法、锂离子电池,属于锂离子电池技术领域。本发明的锂离子电池水性正极复合集流体,采用包括如下步骤的制备方法制得:将粘结剂加入溶剂中,混合均匀,得粘结剂溶液;所述粘结剂与溶剂的质量比为1:10-30;向制得的粘结剂溶液中加入导电剂,混合均匀,研磨乳化,得导电浆料;所述导电剂与粘结剂的质量比为1-99:1;将制得的导电浆料涂覆在正极集流体表面,干燥,即得。本发明的锂离子电池水性正极复合集流体大大改善了水性正极片柔韧性较差的问题,同时还提高了涂层附着力,降低了电池内阻,提高了电池的大倍率放电性能和循环性能。
本发明涉及一种锂离子电池用复合涂层隔膜、锂离子电池,属于锂离子电池技术领域。本发明的锂离子电池用复合涂层隔膜,包括隔膜基材和设置在隔膜基材一面的复合涂层,所述复合涂层包括设置在隔膜基材上的二氧化硅涂层以及设置在二氧化硅涂层上的第一勃姆石涂层。本发明的锂离子电池用复合涂层隔膜的二氧化硅涂层能够避免锂枝晶继续快速增长后刺破隔膜引发电池出现性能衰减和安全问题,涂覆于二氧化硅涂层表面的第一勃姆石涂层避免了锂枝晶出现前,二氧化硅与负极表面金属锂的反应,防止电池有效锂的过度损失,并且能够延缓锂枝晶的进一步增长,从而有效延长电池的使用寿命和降低电池安全事故的发生。
本发明提供了一种锂离子电池负极材料及其制备方法、锂离子电池,该负极材料呈现核壳结构,内核为石墨,外壳为双层结构,由内向外依次是无机锂层和有机锂复合层。其制备过程为:1)将石墨与无机锂复合液混合均匀,调节pH值后,加热除去有机分散剂和溶剂,研磨,得固体产物A;2)将固体产物A与有机锂复合液混合均匀,干燥后进行碳化,冷却至室温即得。其中,无机锂复合液包括无机锂、有机分散剂、粘结剂、石墨烯和溶剂;有机锂复合液包括有机锂、分散剂、粘结剂、碳纳米管和溶剂。本发明的负极材料有效提高了锂离子的传输速率和电子导电性,很好的实现了快速充放电,最终提高电池的倍率性能、安全性能和循环性能。
本发明涉及一种高倍率磷酸铁锂复合材料、正极极片、锂离子电池,属于锂离子电池技术领域。本发明提供的高倍率磷酸铁锂复合材料,由以下质量百分含量的原料烧结得到:磷酸铁锂80%~90%、钴酸锂5%~10%和导电碳5%~10%。导电碳和钴酸锂的加入有利于增加离子和电子导电性,降低阻抗,缓解高倍率放电时磷酸铁锂极化,有利于促使锂离子嵌入到材料内部,提升磷酸铁锂超高倍率放电电压平台,提升其超高倍率放电性能。经烧结,可消除材料间应力,消除不同材料混合后的微孔隙和表面缺陷,增加材料相互作用,钴酸锂、磷酸铁锂和导电碳复配使用,有利于形成完整的导电网络,降低内阻,提高超高倍率放电能力。
本发明公开了一种废旧锂离子电池磷酸铁锂正极材料的资源化回收再利用方法,属于废旧锂离子电池磷酸铁锂正极材料回收技术和碱性二次电池领域。本发明的技术方案要点为:一种废旧锂离子电池磷酸铁锂正极材料的资源化回收再利用方法,以废旧锂离子电池磷酸铁锂正极材料为原料,将其与二价铁盐和有机添加剂混合均匀后,在惰性气氛下经过煅烧处理制得磷酸铁锂基复合材料,然后将该磷酸铁锂基复合材料用于制备碱性二次电池负极。本发明可以高效回收废旧锂离子电池正极材料并用于碱性二次电池负极,实现废旧磷酸铁锂材料的循环再生利用。
本发明公开了一种钛酸锂负极极片、制备方法及钛酸锂电池,所述的钛酸锂负极极片活性物质材料为钛酸锂和碳的复合材料,属于锂离子电池技术领域。本发明所提供的钛酸锂负极极片,通过钛酸锂和碳类材料的复合使用,有利于提高极片的放电克容量,提高钛酸锂电池的输出电压平台,进而提高电池的能量密度;复合材料有利于提高极片的电子电导率,降低钛酸锂电池的内阻,提高电池的倍率和循环性能。本方法得到的钛酸锂负极极片及钛酸锂电池具有能量密度高、倍率性能优异等特点,可显著提高钛酸锂电池的电化学性能,且该制备方法工艺简单,易于规模化制备。
本发明涉及一种镍钴锰酸锂复合正极材料及其制备方法、锂电池,属于锂电池材料技术领域。本发明的镍钴锰酸锂复合正极材料,包括镍钴锰酸锂颗粒以及包覆在镍钴锰酸锂颗粒表面的磷酸铁锂层,所述镍钴锰酸锂颗粒为镍钴锰酸锂二次颗粒。本发明的镍钴锰酸锂复合正极材料采用磷酸铁锂将镍钴锰酸锂二次颗粒包覆,降低了镍钴锰酸锂材料表面的pH,并降低了材料表面的残锂,进而有效地解决了现有技术中镍钴锰酸锂材料在合浆过程中的吸水果冻问题,从而改善了材料的加工性能,提高了材料在电池充放电过程中的稳定性,进而提高了电池的循环性能。
本申请提供一种筛选自放电异常的磷酸铁锂电芯的方法、磷酸铁锂电芯模组的配组方法和磷酸铁锂电芯模组,涉及锂离子电池领域。筛选自放电异常的磷酸铁锂电芯的方法:通过dQ/dV‑V曲线法,确定对自放电最灵敏的OCV1电压区间;通过去极化工序将所有待测电芯的起始电压OCV1保持一致,然后测试所述待测电芯的存储后的电压OCV2;按照电芯自放电测试公式计算K值,K值偏大离散的电芯即为自放电异常的电芯。本申请提供的筛选自放电异常的磷酸铁锂电芯的方法及配组的方法,自放电异常的电芯很容易筛选出来,另外通过该方式配组的模组一致性更好。
本发明提供一种湿法回收退役磷酸铁锂电池粉提锂制备碳酸锂的方法,包括以下步骤:步骤一,将退役LiFePO4和氧化剂加入到容器中,加入水,形成混合液;步骤二,将混合液的温度加热至40‑80℃,加入酸液进行酸浸溶解,保温反应后停止加热,过滤得到含锂滤液和磷酸铁滤渣;步骤三,在含锂滤液50‑70℃下,加入钙盐或者镁盐,加入碱液调节pH至中性,过滤除杂,得到第一滤液;步骤四,在常温下,向第一滤液中逐滴加入碱液,调节液体的pH至11‑13,过滤除杂,得到第二滤液;步骤五,向第二滤液中加入碳酸盐,搅拌后过滤,将滤渣干燥后得到碳酸锂。本发明方法可有效提高锂的回收率,降低铁和磷元素的损失,且产物碳酸锂的纯度高。
本发明涉及一种锰酸锂体系锂离子电池正极电极,包括90%‑98%的锰酸锂混合电极、1%‑9%的导电剂、1%‑9%的正极粘合剂和0%‑1%的弱碱性碱金属盐,混合溶剂搅拌后涂覆在铝箔上形成电池正极电极。本发明通过在电池正极电极加工时加入碱金属盐,提高了电池的容量保持率和容量恢复率,使电池具有较好的低高温性能,从而提高了电池的安全性能,并且在正极中添加的弱碱性碱金属盐,能够与电解液中微量的HF中和,使锰酸锂不处于酸性环境中,从而减少了Mn的溶解,提高了锂离子电池的存贮性能,使其具有较高的能量密度。
一种包覆型锂离子电池正极材料锰酸锂的制备方法,涉及锂离子电池正极材料技术领域。操作步骤:(一)配制含有锰源化合物和镍源化合物的溶液;(二)配制氨水溶液;(三)以NH3·H2O溶液为基液,缓慢加入含有Mn2+金属离子的溶液和足量的碱液反应得到浅绿色沉淀;将沉淀物置于NH3·H2O溶液中,加入含有Mn2+、Ni2+的金属离子溶液,加入足量的NaOH溶液;减压抽滤,真空干燥箱中干燥,得到包覆的类球形的前驱体Mn(OH)2-Ni1-xMnx(OH)2,(0<x<1);(四)预热;(五)球磨;(六)预加热,球磨;(七)煅烧制得类球形正极材料LiMn2O4-LiNi1-xMnxO2(0<x<1)。这种材料在55℃下循环稳定性好,具有较高的比容量(130~135mAh/g)、较高的电压平台和优良的循环性能。
本发明涉及一种锂超级电容电池用嵌锂负极片及制备方法、锂超级电容电池,属于锂超级电容电池技术领域。所述锂超级电容电池用嵌锂负极片包括负极集流体以及涂覆在负极集流体表面的包含碳材料的负极材料涂层,所述负极材料涂层表面均匀嵌有锂粉。本发明的锂超级电容电池用嵌锂负极片,嵌锂效率高,能提高锂在负极材料涂层中的吸收,提高锂的有效利用率,在提高整个锂超级电容电池的能量密度的同时,节省了锂的使用量,节约了成本。
本发明公开了一种磷酸锰铁锂和锰酸锂混合正极浆料,其特征在于:包括按质量组分计,由90%~97%磷酸锰铁锂和锰酸锂组成的混合物,1%~9%份的导电剂和1%~9%份水性粘合剂、0~1%分散剂;所述水性粘合剂为丙烯酸酯或丙烯腈类化合物;一种锂电池的制备方法为正极电极片与负极电极极片、隔膜在叠片机上叠成电芯;将电芯焊接极柄后装到铝塑膜制成的壳体中,进行热封,形成半成品电芯,半成品电芯烘烤后经过注液、化成、分容制作为成品电芯;本发明可以解决现有技术中电池正极成本较高的问题,降低锂电池生产成本。
本发明涉及一种锂含量梯度分布的锂负极及其制备方法、锂二次电池,属于锂负极技术领域。本发明的锂含量梯度分布的锂负极,包括集流体和设置在集流体表面的负极涂层,负极涂层包括含锂材料和混合电导材料,负极涂层中的含锂材料的含量由内向外呈梯度降低分布,负极涂层中的混合电导材料由内向外呈梯度升高分布;含锂材料为金属锂和/或金属锂合金;负极涂层由至少两层的梯度涂层组成;或者,负极涂层由至少两层的梯度涂层与含锂材料层、混合电导材料层中的至少一层组成。靠近集流体侧的梯度涂层中的含锂材料含量高,可提高锂负极的能量密度;靠近电解质侧的梯度涂层中的混合电导材料含量高,为金属锂沉积提供位点,有效抑制锂枝晶的形成与生长。
本发明涉及一种锂硫电池正极及其制备方法,锂硫电池电芯及锂硫电池。锂硫电池正极包括集流体和与集流体熔铸复合的活性物质层,活性物质层由重量比为(7.6±5.1):2:(8±0.5)的铝、多孔炭、硫组成。本发明提供的锂硫电池正极,活性物质层与集流体熔铸复合,活性物质层中的铝形成导电金属网络,多孔炭用于填充硫,所得锂硫电池正极的导电性和结构稳定性较现有锂硫电池正极大大提高,可有效改善锂硫电池的倍率性能和循环性能。
本发明公开了一种锂离子电池用复合导电剂、锂离子电池用复合导电液及其制备方法、锂离子电池,属于锂离子电池技术领域。本发明的锂离子电池用复合导电剂包括以下重量份数的组分:0.5?2份的3?三甲基?硅烷硼酸酯、1?5份的导电剂。本发明的锂离子电池用复合导电剂添加了3?三甲基?硅烷硼酸酯,有利于充放电循环过程中锂离子的传导,也有利于减小锂离子电池的阻抗,进而保证了优异的循环稳定性,同时又可以很好的抑制了Fe2+溶解到电解液中以提高SEI的质量,进而能够提高锂离子电池的高温循环性能,在锂离子电池领域具有良好的应用前景。
中冶有色为您提供最新的河南有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!