本发明公开了一种废旧锂离子电池磷酸铁锂正极材料的资源化回收再利用方法,属于废旧锂离子电池磷酸铁锂正极材料回收技术和碱性二次电池领域。本发明的技术方案要点为:一种废旧锂离子电池磷酸铁锂正极材料的资源化回收再利用方法,以废旧锂离子电池磷酸铁锂正极材料为原料,将其与二价铁盐和有机添加剂混合均匀后,在惰性气氛下经过煅烧处理制得磷酸铁锂基复合材料,然后将该磷酸铁锂基复合材料用于制备碱性二次电池负极。本发明可以高效回收废旧锂离子电池正极材料并用于碱性二次电池负极,实现废旧磷酸铁锂材料的循环再生利用。
本发明公开了一种钛酸锂负极极片、制备方法及钛酸锂电池,所述的钛酸锂负极极片活性物质材料为钛酸锂和碳的复合材料,属于锂离子电池技术领域。本发明所提供的钛酸锂负极极片,通过钛酸锂和碳类材料的复合使用,有利于提高极片的放电克容量,提高钛酸锂电池的输出电压平台,进而提高电池的能量密度;复合材料有利于提高极片的电子电导率,降低钛酸锂电池的内阻,提高电池的倍率和循环性能。本方法得到的钛酸锂负极极片及钛酸锂电池具有能量密度高、倍率性能优异等特点,可显著提高钛酸锂电池的电化学性能,且该制备方法工艺简单,易于规模化制备。
本发明涉及一种镍钴锰酸锂复合正极材料及其制备方法、锂电池,属于锂电池材料技术领域。本发明的镍钴锰酸锂复合正极材料,包括镍钴锰酸锂颗粒以及包覆在镍钴锰酸锂颗粒表面的磷酸铁锂层,所述镍钴锰酸锂颗粒为镍钴锰酸锂二次颗粒。本发明的镍钴锰酸锂复合正极材料采用磷酸铁锂将镍钴锰酸锂二次颗粒包覆,降低了镍钴锰酸锂材料表面的pH,并降低了材料表面的残锂,进而有效地解决了现有技术中镍钴锰酸锂材料在合浆过程中的吸水果冻问题,从而改善了材料的加工性能,提高了材料在电池充放电过程中的稳定性,进而提高了电池的循环性能。
本申请提供一种筛选自放电异常的磷酸铁锂电芯的方法、磷酸铁锂电芯模组的配组方法和磷酸铁锂电芯模组,涉及锂离子电池领域。筛选自放电异常的磷酸铁锂电芯的方法:通过dQ/dV‑V曲线法,确定对自放电最灵敏的OCV1电压区间;通过去极化工序将所有待测电芯的起始电压OCV1保持一致,然后测试所述待测电芯的存储后的电压OCV2;按照电芯自放电测试公式计算K值,K值偏大离散的电芯即为自放电异常的电芯。本申请提供的筛选自放电异常的磷酸铁锂电芯的方法及配组的方法,自放电异常的电芯很容易筛选出来,另外通过该方式配组的模组一致性更好。
本发明提供一种湿法回收退役磷酸铁锂电池粉提锂制备碳酸锂的方法,包括以下步骤:步骤一,将退役LiFePO4和氧化剂加入到容器中,加入水,形成混合液;步骤二,将混合液的温度加热至40‑80℃,加入酸液进行酸浸溶解,保温反应后停止加热,过滤得到含锂滤液和磷酸铁滤渣;步骤三,在含锂滤液50‑70℃下,加入钙盐或者镁盐,加入碱液调节pH至中性,过滤除杂,得到第一滤液;步骤四,在常温下,向第一滤液中逐滴加入碱液,调节液体的pH至11‑13,过滤除杂,得到第二滤液;步骤五,向第二滤液中加入碳酸盐,搅拌后过滤,将滤渣干燥后得到碳酸锂。本发明方法可有效提高锂的回收率,降低铁和磷元素的损失,且产物碳酸锂的纯度高。
本发明涉及一种锰酸锂体系锂离子电池正极电极,包括90%‑98%的锰酸锂混合电极、1%‑9%的导电剂、1%‑9%的正极粘合剂和0%‑1%的弱碱性碱金属盐,混合溶剂搅拌后涂覆在铝箔上形成电池正极电极。本发明通过在电池正极电极加工时加入碱金属盐,提高了电池的容量保持率和容量恢复率,使电池具有较好的低高温性能,从而提高了电池的安全性能,并且在正极中添加的弱碱性碱金属盐,能够与电解液中微量的HF中和,使锰酸锂不处于酸性环境中,从而减少了Mn的溶解,提高了锂离子电池的存贮性能,使其具有较高的能量密度。
一种包覆型锂离子电池正极材料锰酸锂的制备方法,涉及锂离子电池正极材料技术领域。操作步骤:(一)配制含有锰源化合物和镍源化合物的溶液;(二)配制氨水溶液;(三)以NH3·H2O溶液为基液,缓慢加入含有Mn2+金属离子的溶液和足量的碱液反应得到浅绿色沉淀;将沉淀物置于NH3·H2O溶液中,加入含有Mn2+、Ni2+的金属离子溶液,加入足量的NaOH溶液;减压抽滤,真空干燥箱中干燥,得到包覆的类球形的前驱体Mn(OH)2-Ni1-xMnx(OH)2,(0<x<1);(四)预热;(五)球磨;(六)预加热,球磨;(七)煅烧制得类球形正极材料LiMn2O4-LiNi1-xMnxO2(0<x<1)。这种材料在55℃下循环稳定性好,具有较高的比容量(130~135mAh/g)、较高的电压平台和优良的循环性能。
本发明涉及一种锂超级电容电池用嵌锂负极片及制备方法、锂超级电容电池,属于锂超级电容电池技术领域。所述锂超级电容电池用嵌锂负极片包括负极集流体以及涂覆在负极集流体表面的包含碳材料的负极材料涂层,所述负极材料涂层表面均匀嵌有锂粉。本发明的锂超级电容电池用嵌锂负极片,嵌锂效率高,能提高锂在负极材料涂层中的吸收,提高锂的有效利用率,在提高整个锂超级电容电池的能量密度的同时,节省了锂的使用量,节约了成本。
本发明公开了一种磷酸锰铁锂和锰酸锂混合正极浆料,其特征在于:包括按质量组分计,由90%~97%磷酸锰铁锂和锰酸锂组成的混合物,1%~9%份的导电剂和1%~9%份水性粘合剂、0~1%分散剂;所述水性粘合剂为丙烯酸酯或丙烯腈类化合物;一种锂电池的制备方法为正极电极片与负极电极极片、隔膜在叠片机上叠成电芯;将电芯焊接极柄后装到铝塑膜制成的壳体中,进行热封,形成半成品电芯,半成品电芯烘烤后经过注液、化成、分容制作为成品电芯;本发明可以解决现有技术中电池正极成本较高的问题,降低锂电池生产成本。
本发明涉及一种锂含量梯度分布的锂负极及其制备方法、锂二次电池,属于锂负极技术领域。本发明的锂含量梯度分布的锂负极,包括集流体和设置在集流体表面的负极涂层,负极涂层包括含锂材料和混合电导材料,负极涂层中的含锂材料的含量由内向外呈梯度降低分布,负极涂层中的混合电导材料由内向外呈梯度升高分布;含锂材料为金属锂和/或金属锂合金;负极涂层由至少两层的梯度涂层组成;或者,负极涂层由至少两层的梯度涂层与含锂材料层、混合电导材料层中的至少一层组成。靠近集流体侧的梯度涂层中的含锂材料含量高,可提高锂负极的能量密度;靠近电解质侧的梯度涂层中的混合电导材料含量高,为金属锂沉积提供位点,有效抑制锂枝晶的形成与生长。
本发明涉及一种锂硫电池正极及其制备方法,锂硫电池电芯及锂硫电池。锂硫电池正极包括集流体和与集流体熔铸复合的活性物质层,活性物质层由重量比为(7.6±5.1):2:(8±0.5)的铝、多孔炭、硫组成。本发明提供的锂硫电池正极,活性物质层与集流体熔铸复合,活性物质层中的铝形成导电金属网络,多孔炭用于填充硫,所得锂硫电池正极的导电性和结构稳定性较现有锂硫电池正极大大提高,可有效改善锂硫电池的倍率性能和循环性能。
本发明公开了一种锂离子电池用复合导电剂、锂离子电池用复合导电液及其制备方法、锂离子电池,属于锂离子电池技术领域。本发明的锂离子电池用复合导电剂包括以下重量份数的组分:0.5?2份的3?三甲基?硅烷硼酸酯、1?5份的导电剂。本发明的锂离子电池用复合导电剂添加了3?三甲基?硅烷硼酸酯,有利于充放电循环过程中锂离子的传导,也有利于减小锂离子电池的阻抗,进而保证了优异的循环稳定性,同时又可以很好的抑制了Fe2+溶解到电解液中以提高SEI的质量,进而能够提高锂离子电池的高温循环性能,在锂离子电池领域具有良好的应用前景。
本发明涉及一种锂离子电池电解液添加剂、锂离子电池电解液及锂离子电池,属于锂离子电池技术领域。本发明的锂离子电解液添加剂包括乙烯基磷酸酯和乙烯基磺酰氟。本发明的锂离子电解液包括非水有机溶剂、锂盐与添加剂,添加剂包括乙烯基磷酸酯、乙烯基磺酰氟。本发明的锂离子电解液具有较好的阻燃性。采用该电解液的锂离子电池在高电压下工作时,不仅具有较好的循环稳定性,还在高温下具有较好的安全性能。
本发明涉及锂电池外壳及使用该外壳的锂电池和锂电池制造方法,以解决现有技术中锂电池外壳上的绝缘贴膜易受损而影响相邻两单体电池之间绝缘性能的问题。本发明的锂电池外壳外壁上涂覆的第一绝缘涂层可代替现有技术中的绝缘贴膜,可起到将相邻两电池单体绝缘的作用,而又无需用到绝缘贴膜,因而有利于节约锂电池加工成本。同时,涂覆在外壳外壁面上的第一绝缘涂层的强度及其与基体的粘合性能均高于绝缘贴膜,在生产、转运中不易破损。
本发明公开了一种磷酸铁锂‑磷酸钴铁锂核壳结构复合正极材料及其制备方法以及锂离子电池,制备方法:将形成的磷酸铁锂前驱体溶液,转移至超声波化学反应器中采用微波加热处理,得到磷酸铁锂内核材料;将形成的磷酸钴铁锂外壳材料前驱体溶液,转移至超声波化学反应器中采用微波加热处理,使磷酸铁钴外壳材料均匀地包覆在磷酸铁锂内核材料的表面上,得到中间产物,进行离心洗涤、干燥、包碳,即得。本发明制得的磷酸铁锂‑磷酸钴铁锂核壳结构复合正极材料具有良好的电化学特性,有望在动力电池领域应用。
本发明涉及一种锂离子电池电解液用功能添加剂、锂离子电池电解液、锂离子电池,属于锂离子电池技术领域。本发明的锂离子电池电解液用功能添加剂,包括以下重量份数的组分:甲烷二磺酸亚甲酯0.2~1.0份和二氟双草酸磷酸锂0.2~1.0份。本发明的锂离子电池电解液用功能添加剂含有的甲烷二磺酸亚甲酯和二氟双草酸磷酸锂可优先在正极表面氧化分解,形成一层含硫和含磷的保护膜,该膜具有较好的热稳定性,同时阻抗较低,其可以有效隔绝电解液和正极表面直接接触,减少电解液在正极表面的氧化分解,提升电池的高温性能和循环性能;同时还能够减少金属离子的溶出,避免金属离子对负极SEI膜的破坏,进一步改善电池的循环性能。
本发明涉及一种锂离子电池复合负极材料的制备方法、锂离子电池复合负极材料及锂离子电池,属于锂离子电池材料技术领域。该锂离子电池复合负极材料的制备方法包括如下步骤:将硅材料、聚丙烯腈在纺丝溶剂中分散,制得芯层纺丝液,将聚甲基丙烯酸甲酯在纺丝溶剂中分散,制得壳层纺丝液;通过同轴静电纺丝技术制成纤维,得到包覆前驱体;将包覆前驱体加入成膜添加剂溶液中混合,加热除去溶剂,制得成膜前驱体;将成膜前驱体在500‑800℃下烧结1‑24h进行碳化处理,即得。本发明的方法制备出的复合负极材料具有克容量高、吸液保液能力强、循环性能优异、低温放电能力强等优点,非常适合于电动汽车、储能等领域的应用。
本发明涉及一种锂电池复合正极片、锂电池复合负极片及其制备方法、锂电池,属于锂离子电池技术领域。该锂电池复合正极片,包括正极集流体及涂覆在正极集流体上的包括正极材料的正极底层和正极顶层,其特征在于,所述正极底层和正极顶层之间设置有过渡层,所述过渡层包括LiAlO2、粘结剂,所述LiAlO2、粘结剂的质量比为10-20:2.5-5.0。本发明的锂电池复合正极片制得的锂电池具有较高的倍率性能和循环性能。
本发明涉及一种锂离子电池负极用复合导电剂及制备方法、锂离子电池负极及锂离子电池。该复合导电剂主要由以下重量比的组分组成:导电剂:有机锂化合物:功能性物质=(5~10):(0.5~1):(0.5~1),所述功能性物质为三聚氰胺磷酸酯、三聚氰胺焦磷酸盐、多聚磷酸铵、聚二甲基硅氧烷、季戊四醇磷酸酯三聚氰胺盐、三聚氰胺氰尿酸盐中的一种或多种的组合。该复合导电剂在为负极补充锂离子的基础上,可以通过功能性物质的使用提高负极在充放电过程中的安全性,导电剂、有机锂化合物可以提高负极的电子和离子导电能力,提高电子和锂离子的传输速率,从而优化负极材料的克容量发挥及首次效率。
本发明涉及一种锂电池干燥架、锂电池干燥装置及干燥锂电池的方法,属于锂离子电池技术领域。本发明的锂电池干燥架包括干燥架本体,所述干燥架本体包括沿前后方向延伸的干燥架横梁以及固定设置在干燥架横梁一侧或者两侧并沿左右方向延伸的电池托盘,所述干燥架横梁上固定设置有用来与电池的抽气口密封连接的抽真空管路,所述电池托盘上固定设置有用来使电池保持在与抽真空管路处于密封连接状态的限位机构。本发明的锂电池干燥架提高了锂电池的干燥效率,降低了生产成本。
本发明涉及一种锂离子电池用集流体及其制备方法,锂离子电池用极片及锂离子电池。该集流体包括铝箔,所述铝箔的一面或两面附着有PTC层;所述PTC层中含有正温度系数材料,所述正温度系数材料为掺杂金属氧化物的钛酸锶烧结体或钛酸铅烧结体,所述金属氧化物为Nb、Ta、Bi、Sb、Y、La中任意一种的氧化物或氧化物的组合。该集流体在电池内部温度上升到临界点时,PTC(正温度系数电阻)层电阻急速变大甚至绝缘,从而能够有效控制锂离子电池在大倍率充放电时的电池温度;当电池受到穿刺等伤害时可以有效阻止负极与铝箔的直接接触,从而避免负极与铝箔短路放电的可能,减缓了短路时电池放热反应,进一步提高锂离子电池的安全性。
本发明涉及一种锂离子电池负极片的制备方法、锂离子电池负极片及锂离子电池,属于锂离子电池技术领域。该锂离子电池负极片的制备方法,包括如下步骤:将负极材料与水混合均匀制得负极浆料;所述负极材料包括负极活性物质、导电剂、粘结剂、添加剂,负极活性物质、导电剂、粘结剂、添加剂的质量比为85.5‑95.5:1‑3:1.5‑3.5:2‑8;所述添加剂为碳酸乙烯酯、碳酸丙烯酯中的至少一种;将制得的负极浆料涂布在负极集流体上,烘干即得。本发明的锂离子电池负极片的制备方法在合浆过程中加入了添加剂,能够最大程度地减少涂布烘干后极片开裂、卷边等问题,大幅度提高了极片的合格率,减少因为极片质量导致的电池性能下降。
本发明涉及一种用于锂电池的无锂负极片、锂电池,属于锂电池技术领域。本发明的用于锂电池的无锂负极片,包括负极集流,所述负极集流体的一面或两面在远离负极集流体的方向上依次设有锂沉积诱导层、无机电子绝缘层;所述锂沉积诱导层包括能够与锂形成合金或与锂形成化合物的负极活性材料。本发明的无锂负极片,在负极集流体的一面或两面远离负极集流体的方向上设置的锂沉积诱导层,能够诱导锂均匀沉积,从而抑制锂枝晶在负极集流体表面的生长,而无机电子绝缘层则可以避免锂沉积后形成大比表面积、大孔隙率的锂层,进而在固液界面发生大量的电化学腐蚀而导致库伦效率的降低,从而极大地提高了锂电池的安全性和循环性能。
本发明涉及一种锂离子电池用电解液功能添加剂、锂离子电池电解液、锂离子电池,属于锂离子电池技术领域。一种锂离子电池用电解液功能添加剂,由以下重量份数的组分组成:碳酸亚乙烯酯0.2~2份、硫酸乙烯酯0.5~2.5份、二氟磷酸锂0.2~1份、成膜剂0.2~1份和氟代碳酸乙烯酯0.5~2.5份;所述成膜剂为三(三甲基硅烷)硼酸酯、三(三甲基硅烷)磷酸酯中的至少一种。本发明的锂离子电池用电解液功能添加剂,用于高容量三元正极材料用锂离子电池时,可使正负极表面形成优良的SEI膜,能有效阻止电解液与正极表面的直接接触,同时减少金属离子的溶出,明显提升电池的循环性能。
本发明属于锂的提取技术领域,具体涉及一种从锂矿石浸出液中提取锂的复配萃取剂及提取锂的方法。本发明的从锂矿石浸出液中提取锂的复配萃取剂包括主萃剂和协萃剂,所述主萃剂为p204,所述协萃剂选自TBP、TOPO和TRPO中的任意一种或几种,所述主萃剂与协萃剂的体积比为(4‑6):(1‑3)。本发明的从锂矿石浸出液中提取锂的复配萃取剂具有萃取效率高等优点。尤其当复配萃取剂的稀释剂采用GV‑18A时,萃取效果更好。
本发明涉及一种在含锂金属带表面制备保护层的方法、锂铜复合带负极及其制备方法、锂电池,属于锂电池技术领域。本发明的在含锂金属带表面制备保护层的方法,包括以下步骤:在含锂金属带的至少一面设置第一离型膜进行加压复合;第一离型膜包括基膜和包含离子导电聚合物的离型层;加压过程中第一离型膜的离型层朝向所述含锂金属带。该方法通过加压复合将第一离型膜上的含离子导电聚合物的离型层转移至含锂金属带表面,形成保护层,避免了采用涂覆的方法制备保护层时溶剂与金属锂的副反应,以及溶剂挥发造成的保护层结构疏松;同时制得的保护层还能有效抑制含锂金属带在空气中反应以及锂枝晶的形成,能够有效降低电池制备成本、提升电池循环性能。
本发明属于锂离子电池技术领域,涉及一种锂离子电池正极浆料的制备方法、锂离子电池正极片及锂离子电池。本发明的锂离子电池正极浆料的制备方法,包括以下步骤:将溶剂和粘结剂加入到制胶罐中混合均匀,制得胶液,将胶液送入储存罐A中储存;将所述胶液、导电剂与活性物质加入到搅拌罐中,混合均匀,制得待处理浆料,将待处理浆料送入储存罐B中储存;将所述待处理浆料送入高速分散系统中进行处理,得到锂电池正极浆料。本发明工艺简单、易操作,能够显著缩短配料时间,提高生产效率,提高设备利用率,同时浆料混合均匀,浆料的分散性和一致性好。
本发明公开了一种利用磷酸铁锂废料制备锂离子电池正极材料磷酸铁锂的方法,该方法是:以磷酸为液体原料,与其它固体原料混合,并加入纯净水形成膏状混合物;经微波加热前处理后得到前驱体,加入可溶于水的碳源化合物水溶液和前驱体混合球磨,并微波加热即得。本发明将前驱体和可溶于水的碳源化合物水溶液混合球磨,能够使碳源化合物对前驱体进行碳包覆,有效提高产品的品质;在微波加热过程中,碳源化合物水溶液中的水和碳元素还能形成CO还原气氛,省去了惰性气体的保护,进一步降低了生产成本。本发明利用LiFePO4废料制备锂离子电池正极材料LiFePO4,能够降低生产成本50%以上,具有较好的经济和社会效益。
本发明涉及一种锂离子电池回收利用前的安全处理方法及装置,锂离子电池的安全回收方法。该安全处理方法包括:1)将开口的锂离子电池或电芯置于密封腔体内,对密封腔体进行抽真空;2)向密封腔体内加入浸渍液进行浸渍处理,所述浸渍液为水溶性有机物与水的混合溶液,水溶性有机物与水的质量比为(3~19):1,浸泡后排出浸渍废液。本发明提供安全处理方法,采用水溶性有机物与水的混合溶液作为处理液,降低水与电芯中余锂反应速率,避免了H2等易燃气体和热量的富集,安全性高;可以同时实现余锂和LiPF6彻底消除,经处理后的电池或电芯无需在保护气氛中进行拆解或破碎,提高了后续电芯拆解回收过程的安全性和拆解效率。
本发明涉及一种补锂负极片及其制备方法、锂离子超级电容器、锂离子电池,属于储能器件技术领域。一种补锂负极片,包括负极片,所述负极片是由负极集流体以及涂覆在负极集流体表面的负极材料涂层构成的,所述负极材料涂层表面涂覆有锂粉层,所述锂粉层包括均匀混合分布的锂粉和粘结剂,所述锂粉和粘结剂的重量比为60-98:2-4。本发明的补锂负极片锂粉不容易脱落,还提高了锂粉的使用效率,保证了补锂量和补锂效果。
中冶有色为您提供最新的河南有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!