本发明公开了一种碳陶耐磨复合材料及其制备方法,采用Ti‑Cu二元合金作为浸渗剂,碳纤维作为增强相,通过反应熔渗法低温制备组织和性能良好的C/C‑TiC‑Cu复合材料,所述复合材料的物相组成为TixCuy(x、y代表合金的原子比)、TiC、C和少量Cu相。其制备方法包括以下步骤:(1)C/C多孔体的制备与预处理;(2)C/C多孔体的碳纤维表面制备界面保护涂层;(3)增密带有界面保护涂层的C/C多孔体得到多孔C/C预制体;(4)Ti‑Cu二元合金的制备;(5)将Ti‑Cu二元合金与多孔C/C预制体进行高温熔渗处理,得到C/C‑TiC‑Cu复合材料。本发明制备方法简单,效率高,TiC陶瓷相的加入提高了复合材料整体的摩擦磨损性能,TixCuy合金相的引入可有效调控复合材料的摩擦磨损性能。
本发明公开了一种C/C复合材料接骨板及其制备方法,该C/C复合材料接骨板包括由0°无纺布、碳纤维网胎和90°无纺布依次交替叠层形成的C/C复合材料基材;所述C/C复合材料基材层间填充针刺炭纤维;C/C复合材料基材的表面包覆有热解炭层;并且所述热解炭层的外侧填充有树脂炭。该C/C复合材料接骨板具有良好的生物相容性,疲劳性能好,其力学性能与人骨接近,并且不会对MRI、CT、X线检查等产生干扰或阻挡作用。
本发明涉及一种耐强酸复合材料及其制备方法。所述耐强酸复合材料由树脂、玻璃纤维和填料经过捏合、撕松、烘烤固化而成,所述的树脂∶玻璃纤维∶填料的质量比为40-44∶53-56∶3-5,所述树脂的组成为70-80%热固性酚醛树脂、10-20%热塑性酚醛树脂、5-15%环氧树脂。其制备方法包括以下工艺流程:A、一次捏合:将称量好的热塑性酚醛树脂、环氧树脂和玻璃纤维短切丝投入捏合机内进行搅拌;B、二次捏合:将称量好的热固性酚醛树脂、填料投入捏合机内与热塑性酚醛树脂、环氧树脂继续搅拌;C、撕松:将捏合完成的产品进行撕松;D、烘烤固化。采用这种复合材料制备出来的设备可以在高温强酸条件下运行一年以上。
本发明公开了一种低气味高抗冲玻璃纤维增强聚丙烯复合材料及其制备方法,所述低气味高抗冲玻璃纤维增强聚丙烯复合材料由包括如下重量份的各组分制备得到:茂金属均聚聚丙烯50?80份,玻璃纤维10?40份,无游离马来酸酐接枝物5?9份,润滑剂0.3?0.5份,抗氧剂0.3?0.5份,光稳定剂0.3?0.5份。本发明选用的茂金属聚丙烯和无游离马来酸酐接枝物,从基材的选用上降低了VOC来源和气味来源。本发明所述的低气味高抗冲玻璃纤维增强聚丙烯复合材料的制备方法,在挤出工艺造粒完成后,采用均混干燥处理进一步降低气味及VOC含量,且制备工艺简单,制备过程易于控制。
本发明公开了一种航天复合材料构件在低温环境下的渗漏性测试方法,将真空泵和氦质谱检漏仪接入真空管路,以排除空气中的氦气成分对测试结果的影响,并保证测试过程中氦质谱检漏仪可采集到渗漏气体;真空泵对测试罐和密封罐的空间抽真空直至氦质谱检漏仪示数为零,向密封罐中注入液氦,通过观察液位计示数变化;观察并记录氦质谱检漏仪示数变化,得到复合材料在低温环境下的渗漏性能。本发明的渗漏性测试方法能够高度还原大型航天复合材料构件服役时所处低温环境,实现对复合材料构件进行低温渗漏性检测,为大型航天复合材料构件的高品质制造和耐极端环境复合材料体系的研发提供了必要的检测方法。
本发明公开了一种基于压电纤维传感器阵列的复合材料板裂纹定位方法,该方法为:首先确定复合材料板参数,利用有限元分析的方法得到板中Lamb波群速度方向角(0°‑360°)与主应力方向角的映射关系;第二步将新型压电纤维传感器阵列布置在复合材料板表面,通过激励器产生Lamb波,压电纤维传感阵列采集复合材料裂纹损伤信号;第三步结合匹配追踪算法由裂纹散射波包幅值计算主应变方向角,利用复合材料板中Lamb波群速度方向角与主应力方向角的映射关系实现任意两组压电纤维传感器组合对裂纹的定位。本发明方法为复合材料板中Lamb波与裂纹交互作用下群速度方向的识别和裂纹定位提供了一种新的思路。
本发明提供了一种碳硒复合材料及其制备方法和在锂硒电池中的应用,与现有技术相比,本发明提供的碳硒复合材料制备方法中,二维碳材料不仅原料来源广泛简单易得,制备方法简单,实用化程度较高,且得到的碳硒复合材料表现出优异的电化学性能。本发明采用一步水热反应制备二维碳材料,所述二维碳材料含有丰富的微介孔结构,且其具有较高的石墨化程度,将此二维碳材料与硒进行低温复合和活化,得到碳硒复合材料,所述碳硒复合材料中单质硒均匀负载于二维碳材料表面的微介孔中,负载率高达80%;以此碳硒复合材料作为正极材料组装得到电化学稳定的锂硒电池。
一种有高弹耐热耐蚀耐磨纳米复合材料涂层的钢管生产工艺,包括:用刚玉砂对钢管内外表面进行喷砂处理,除去钢管内外壁的铁锈腐蚀产物;用压缩空气吹净经过喷砂的钢管内表面的浮砂和灰尘,随后在预热炉中预热,以除去管内壁水份和潮气;对经预热钢管的内表面进行钛合金纳米复合材料喷涂,形成涂层;将喷涂后的钢管绕管轴旋转,使涂层均匀流平、管表面光滑、平整;再使涂层完全固化,即得成品钢管;钛合金纳米复合材料由几种钛合金纳米粉体作为活性添加剂与优选的树酯及助剂组成,具有该涂层的钢管用作油井采油管及注水管可满足2000M-5000M深井作业条件的要求,其使用寿命长,可由此节约大量吨钢材、降低生产成本。
本发明涉及可控膨胀系数材料领域,尤其涉及一种ZrW2O8/ZrSiO4可控膨胀系数复合材料及其制备方法,其ZrW2O8/ZrSiO4可控膨胀系数复合材料包括ZrW2O8和ZrSiO4,其ZrW2O8/ZrSiO4可控膨胀系数复合材料中的ZrW2O8的体积分数为10%至90%。为制备ZrW2O8/ZrSiO4可控膨胀系数复合材料的方法为:先称取相应体积百分比含量的ZrW2O8粉末和ZrSiO4粉末加入到容器中,再加入乙醇,并在室温下反复进行研磨、超声分散、搅拌过程三次,再将ZrW2O8和ZrSiO4的混合粉末料依次进行干燥、细研磨、压片、烧结,最后获得复合材料的样品。本发明能获得组成稳定的ZrW2O8/ZrSiO4可控膨胀系数复合材料;且采用传统固相工艺制备ZrW2O8/ZrSiO4复合材料,工艺成熟简单。
本发明公开了一种碳基复合材料及其制备方法和应用,碳基复合材料包括依次叠加设置的碳‑碳复合材料层、碳化锆层和热解石墨层,可用于制作硅碳负极材料制备用的坩埚。制备方法包括:(1)制备或取用碳‑碳复合材料层;(2)在碳‑碳复合材料层表面沉积形成碳化锆层;(3)在碳化锆层表面沉积形成热解石墨层。本发明的碳基复合材料具有高强度、低密度、低热膨胀系数、低热导率、高强度、高耐受、表面低灰分的优势,本发明获得了致密度高的碳化锆层,增强了各层之间、与基体之间的结合强度,从而提升了碳基复合材料的整体力学性能,并缩短了制备周期、降低了制备成本;所得产品在硅碳负极材料的纯化工艺中能够使用高达120炉次。
本发明公开了一种碳纤维增强SiZrOC复合材料及其制备方法,以碳纤维预制件为增强体,采用含Zr的聚硅氧烷为先驱体,通过反复浸渍‑固化‑裂解获得C/SiZrOC复合材料,该过程中采用的碳纤维预制件为三维四向编织件、二维布、二维穿刺编织件等,含Zr的聚硅氧烷中Zr含量的质量比为5‑30%,经浸渍‑固化‑裂解反复致密化后当本周期样品质量较上周期结束时样品质量增重不超过1%时得到C/SiZrOC复合材料。本发明所述的一种碳纤维增强SiZrOC复合材料的制备方法,提高了C/SiOC复合材料的高温稳定性,具有成本低廉、耐高温性能好且对设备要求低等优点。
本发明属于复合材料技术领域。本发明提供了一种高导热复合材料,由包括如下重量份的组分制备得到:连续导热网络12~30份、树脂基体8~12份、导热填料0.8~2.4份。本发明以连续导热网络、树脂基体和导热填料为组分得到的高导热复合材料,热导率显著高于目前通用的导热界面材料的热导率,本发明复合材料的热导率为20~40W/m·K。本发明的高导热复合材料能够快速、有效的散热,适用于部件小型化、高密度安装、高发热化组装的电子产品。
本发明提供了一种聚苯醚树脂基复合材料及其制备方法和应用,属于复合材料技术领域。按质量份数计,聚苯醚树脂基复合材料包括以下制备原料:聚苯醚树脂40~80份;聚苯乙烯树脂15~30份;弹性体5~15份;聚乙烯0~5份;空心玻璃微珠1~10份;润滑剂0~2份;抗氧剂0~1份。本发明以聚苯醚树脂为主体原料,配合使用聚苯乙烯树脂和弹性体,提高了聚苯醚树脂基复合材料的流动性和韧性;以空心玻璃微珠作为无机微纳米填料,具有质轻、密度低的特性,有利于降低聚苯醚树脂基复合材料的比重,而且能够降低其介电常数和介电损耗,可以应用于5G通讯领域中。
本发明提供了一种纳米纤维素增韧的混纤纱复合材料层合板及其制备方法。首先,制备静电排斥分散的氧化纳米原纤化纤维素(TONFC);然后,用含有TONFC的溶胶液对连续玻璃纤维/无规共聚聚丙烯纤维(CGF/PPR)混合纱织物进行浸渍;再经过干燥和热压成型后得到复合材料层合板。复合材料体系中进行的酯化反应和酰胺化反应,确保形成了强的TONFC/PPR、CGF/PPR界面及具有提高材料韧性的β相。因此,本发明的TONFC增韧的复合材料层合板具有高的模式Ⅰ层间断裂韧性。本发明制备工艺简单,效率高,有效地提高了热塑性复合材料层间断裂韧性,为提高热塑性层压板层间区域韧性开辟了新途径。
本发明提供一种玻纤增强聚酰亚胺复合材料的制备方法,包括以下步骤:S1、常温下将硅烷偶联剂加入有机溶剂中,然后加入玻纤粉搅拌一定时间,加入酸调节pH值为5.5‑6.5;S2、加入聚酰亚胺树脂粉末,继续搅拌均匀,过滤、干燥得复合材料粉末。所述复合材料进一步制得的复合材料板材,所述复合材料板材进行摩擦系数测试和力学性能测试,测试摩擦系数≤0.2,拉伸强度≥100MPa,弯曲强度≥160MPa,冲击强度≥200kJ/m2。通过合适的原料选择和工艺方法,实现了改善聚酰亚胺与玻璃纤维混合均匀性的同时,缩短了现有技术中分步处理中各种原料分开处理、干燥、再混合的流程,降低成本的同时提高了生产效率,适合大规模工业化应用。
一种C/C复合材料表面SiC涂层的制备方法,包括如下步骤:(1)制备并预处理C/C复合材料坯体;(2)C/C复合材料坯体表面处理:使用激光切削装置真空环境下在C/C复合材料坯体的表面形成均匀的槽口,所有的槽口形成网格状结构;(3)SiC涂层的制备:采用化学气相沉积法,并以三氯甲基硅烷MTS作为前驱体以提供沉积反应的硅源和碳源;(4)连续重复步骤(3)中的沉积过程1‑2次,重复之前,清空化学气相沉积炉中的残留气体,更换新的三氯甲基硅烷MTS作为前驱体以提供沉积反应的硅源和碳源,其余沉积条件不变。本发明可以有效解决SiC高温氧化时产生的严重氧化甚至剥落、脱离现象及失效现象,利于延长涂层的使用寿命,从而利于提高C/C复合材料的高温抗氧化性能。
本发明属于零部件技术领域,具体涉及一种碳碳复合材料及其制备工艺和应用。本发明的制备的碳碳复合材料,按照质量计包括碳纤维20%—36%、气相沉积成碳28%—45%、浸渍成碳26%—48%;本发明碳碳复合材料的制备工艺,包括预制体制备、浸渍剂原料制备、多级增密反应。本发明的碳碳复合材料能在高温和超高温环境中保持常温状态下的力学性能、热物性能和摩擦磨损性能,具有较好的应用前景与市场前景。本发明的制备方法经济效益强,成本低50%,可大批量生产本发明的碳碳复合材料。
本发明公开了一种Mg/Fe氧化物修饰的生物炭纳米复合材料及其制备方法,Mg/Fe氧化物修饰的生物炭纳米复合材料以生物炭为基体,在生物炭表面负载Mg/Fe氧化物。其制备方法为:将农林废弃物粉碎后混悬在水中得到混悬液A;加入Mg2+和Fe3+,搅拌分散得到混悬液B;进行老化,共沉淀获得生物质铁镁改性复合物;在惰性气氛下进行热解。本发明中Mg/Fe氧化物修饰的生物炭纳米复合材料具有低价高效、可大规模生产、具有强吸附能力且能迅速实现固液分离的、环境友好等优势,应用于活化过硫酸盐降解水体中的抗生素污染,去除效果好,反应速度快。
本发明提供一种基于MAX相层状陶瓷钛碳化硅(Ti3SiC2)和金属铜的复合材料的制备方法,包括以下步骤:(1)混料:将钛碳化硅粉末与树脂粉末在球磨机中混料后干燥,得到混合粉末。(2)温压成型:混合粉末置于模具中,加温加压成型得到坯体。(3)热解:将坯体在氮气环境下热解,得到多孔碳和陶瓷的混合骨架。(4)反应烧结,得到多孔陶瓷。(5)真空熔渗:在真空下将铜熔融浸渍多孔陶瓷,得到金属/陶瓷复合材料。所制得的复合材料具有陶瓷与金属相互交织的连续三维网络结构,表现出良好的力学性能,同时具有良好的电学性能与耐磨损性能,且制备方法简单,具有广泛的应用前景。
本实用新型提供一种含正多边形截面的棱柱形微波腔的复合材料固化装置,装置包括截面呈正多边形的棱柱形微波腔体、微波发生器、振动气锤、物料托板和抽真空部件;所述正多边形为五边至十二边之间,且棱柱体的侧面上各设置有一根裂缝天线,所述微波发生器向微波腔体内发送微波用于为所述复合材料供热,所述物料托板设置在微波腔体内,物料托板上用于直接或间接放置复合材料待处理制件;所述振动气锤为能向所述物料托板和复合材料提供5000Hz以下振动频率的振动以及能提供2g以上竖直方向的振动加速度的振动的振动气锤。本实用新型所述装置可以使得复合材料预浸料在大气压下固化得到性能优良的制件。
本实用新型公开了一种复合材料板材的制备系统,包括预固化平台、加热装置和抽真空装置,预固化平台包括支架以及布置于支架上的上面板和下面板,上、下面板之间设有与所述加热装置连通的换热管;板材制备时加热装置通过换热管使上面板的温度升至复合材料预固化温度,敷设相应模具后再通过抽真空装置将平台表面抽真空,在真空负压作用下复合材料进入预固化平台上完成注胶和预固化过程。简化了以往技术复杂的工艺流程,极大的促进了小批量生产的生产效率,并且制备的板材力学性能较为优良,为复合材料板材尤其是一些用于力学性能测定等试验的复合材料板提供了一个很好的工艺选择。
本申请涉及电池材料领域,具体而言,涉及一种硅碳复合材料及其制备方法、锂电池负极。一种硅碳复合材料,硅碳复合材料包括内核和包覆于内核外的外壳;内核包括纳米硅材料,纳米硅的颗粒粒径为10‑500nm;外壳的材料包括碳和含锂固体电解质。本申请的硅碳复合材料具有碳的电子导电特性的同时还具有含锂固体电解质较高的锂离子传输速率,含锂固体电解质可以降低首次充放电过程中锂离子的消耗,从而提高其首次效率;碳材料以及固态电解质形成的外壳与内核具有较强的结合力,可以有效抑制在充放电过程中硅碳复合材料的膨胀。
本发明公开了一种磷酸银/金属有机骨架复合材料及其制备方法和应用,该复合材料包含磷酸银和MIL‑53(Fe),磷酸银掺杂在MIL‑53(Fe)中。其制备方法包括将MIL‑53(Fe)分散于水溶液中,超声,得到含MIL‑53(Fe)的分散液;往含MIL‑53(Fe)的分散液中依次加入Ag+和PO43‑,搅拌,得到磷酸银/金属有机骨架复合材料。本发明磷酸银/金属有机骨架复合材料具有比表面积大、分散性好、稳定性好、光催化性能好等优点,其制备方法具有操作简单、原料种类少、成本低等优点,适合于大规模的制备。本发明复合材料能够用于处理抗生素废水,能够实现对抗生素的高效去除,具有较好的应用前景。
本发明公开了一种微纤复合NaA分子筛膜‑纳米零价铁复合材料及其制备方法和在废水处理中的应用。所述的微纤复合NaA分子筛膜‑纳米零价铁复合材料的制备方法,包含如下步骤:NaA分子筛的制备步骤;烧结毡预处理步骤;微纤复合NaA分子筛膜制备步骤;微纤复合NaA分子筛膜‑纳米零价铁复合材料的制备步骤:将微纤复合NaA分子筛膜于亚铁溶液中浸泡20~40min,取出后在微纤复合NaA分子筛膜表面滴加硼氢化钠溶液,滴加完1~3h后经抽滤、洗涤、真空干燥得微纤复合NaA分子筛膜‑纳米零价铁复合材料。所述的微纤复合NaA分子筛膜‑纳米零价铁复合材料在处理了废水中的重金属后,还能进一步去除废水中的偶氮染料以及COD。
本发明公开了一种SiCf/SiC复合材料的界面改性方法,包括以下步骤:(1)在SiC纤维预制体中的SiC纤维表面制备界面涂层;(2)以带界面涂层的SiC纤维预制体为增强体,以LPVCS为先驱体,采用热模压辅助交联的PIP工艺进行处理,制得经过界面改性的SiCf/SiC复合材料。本发明的界面改性方法显著改善了复合材料中纤维与基体的界面结合,提高了复合材料的弯曲强度和断裂韧性,降低了材料的孔隙率,缩短了复合材料的制备周期。
本发明提供了一种木质纤维粉,由木质纤维颗粒、偶联剂和氧化聚乙烯蜡制备得到,所述偶联剂包括铝酸酯偶联剂和钛酸酯偶联剂。本发明提供的木质纤维粉由木质纤维颗粒、偶联剂和氧化聚乙烯蜡制备得到,这种木质纤维粉和塑料的相容性较好,结合强度较高,使用这种木质纤维粉制备得到的木塑复合材料的弯曲强度和弹性模量较高;而且这种木质纤维粉的流动性较好,具有较好的加工性能,能够在木塑复合材料中大量添加后采用挤出成型的技术制备木塑复合材料,制备得到的木塑复合材料具有较好的耐高温性能,而且厚度均匀、不易分层。本发明还提供了一种木质纤维粉的制备方法和一种木塑复合材料。
本发明提供一种碳纤维增强碳化硅复合材料缺陷的修复方法,可以修复Cf/SiC复合材料在服役过程中易产生的主要损伤,包括高温气流或粒子烧蚀、机械损伤等,可以实现Cf/SiC复合材料缺陷的修复,原料易得,工艺控制简便,有望大大降低复合材料的使用成本;修复完成后,材料组成仍然Cf/SiC复合材料,组成不发生改变。
一种双梯度碳化物改性C/C复合材料的制备方法,利用化学气相渗透/沉积工艺,在炭纤维预制体中炭纤维表面沉积炭和碳化物的双元基体;所制备的复合材料中,碳化物的密度从内径面到外径面由高到低呈梯度分布,炭的密度从内径面到外径面由低到高呈梯度分布,形成炭-陶瓷宏观梯度;在复合材料中炭纤维表面,从全部为炭涂层过渡到炭-碳化物共沉积涂层,最后全部为碳化物涂层呈梯度分布,形成炭-陶瓷微观梯度;获得双梯度碳化物改性C/C复合材料;该方法制得的材料具有耐高温、耐磨、抗冲刷、抗氧化、耐烧蚀、热冲击性能优越的特点。本发明工艺方法简单、操作方便、制备成本低、制备的C/C复合材料具有优良抗烧蚀及抗热震性能,适于工业化生产。
本发明公开了一种二氧化钛纳米复合材料及其制备方法和应用,该二氧化钛纳米复合材料包括TiO2纳米颗粒,TiO2纳米颗粒表面包覆有ZrO2无机膜层形成TiO2@ZrO2核壳结构纳米粒子,其表面修饰有表面活性剂。其制备方法包括制备TiO2@ZrO2核壳结构纳米粒子,与表面活性剂溶液混合进行气流粉碎,得到二氧化钛纳米复合材料。本发明二氧化钛纳米复合材料具有白度高、耐候性好、分散性好、紫外线吸收能力强等优点,其制备方法,具有工艺简单、操作方便、反应可控等优点。本发明二氧化钛纳米复合材料适用于水性体系的化妆品或木材表面防褪色乳液,能够广泛用于化妆品和木材领域,有着很好的应用价值和应用范围。
本实用新型涉及一种低粘结电阻的C/C复合材料滑板,属于电力机车用材料技术领域。本实用新型所设计的滑板包括C/C复合材料层2、第一金属网层4、金属托架5;所述C/C复合材料层2由上层结构1和下层结构3组成;所述下层结构3内均匀镶嵌有金属网6;所述第一金属网层4位于C/C复合材料层2的下层结构3与金属托架5之间,并与C/C复合材料层2、金属托架5构成一个整体。本实用新型结构设计合理,便于大规模的工业化应用和生产。
中冶有色为您提供最新的湖南有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!