本发明涉及一种富锂锰基前驱体、及其制备方法和富锂锰基正极材料。所述富锂锰基前驱体的制备方法,包括如下步骤:(1)将镍盐、钴盐、锰盐和掺杂离子盐溶于水中,得到混合盐溶液;(2)在所述混合盐溶液中加入沉淀剂和络合剂,调节pH值,得到反应前驱体;(3)将所述反应前驱体进行间断式超声震荡,得到富锂锰基前驱体粗品。本发明调节反应体系的pH值,使得材料的粒度处于上涨阶段,采用间断式超声震荡控制反应体系中的粒度,当粒度超出控制指标时,开启超声震荡器,使反应体系快速成核,粒度下降,当粒度下降至合格标准范围后关闭超声震荡器,进而实现富锂锰基前驱体的粒径可控。
锂离子电池极片,包括集流体和涂覆在集流体上的电极物料,所述电极物料包括活性物质、导电剂和热膨胀高分子聚合物,所述高分子聚合物和所述导电剂在溶剂中混合形成热膨胀导电胶溶液,所述高分子聚合物的热膨胀系数大于30×10?6m/mk,高分子聚合物的添加量不超过固体物料总质量的20%。本发明在电极物料中加入热膨胀高分子聚合物,当锂离子电池在发生过充、过放、短路、破损、挤压变形等情况时,热膨胀高分子聚合物的体积可以迅速膨胀,从而切断锂离子电池的电子传送通道,快速增加锂离子电池的电阻,提高了锂离子电池的安全性能。
本发明提供了一种锂电池负极及其制备方法,所述锂电池负极包括集流体和位于集流体表面的负极活性材料;所述负极活性材料为两层复合结构,其中靠近集流体侧的第一层由碳材料和第一材料组成,远离集流体侧的第二层由第一材料和第二材料组成;所述第一材料选自硅单质、含硅化合物中的至少一种,所述第二材料为NASICON型固态电解质;所述第一层中碳材料和第一材料的含量在所述锂电池负极厚度方向上呈梯度分布,且离集流体越近的位置碳材料的含量越高、离集流体越近的位置第一材料的含量越低。本发明还提供了采用该负极的锂电池。采用本发明提供的负极的锂电池,在获得较高比容量的同时,还具有良好的循环性能。
本发明公开了一种安全型锂离子动力电池电解液及锂离子动力电池。所述电解液包含非水有机溶剂、锂盐、低阻抗成膜添加剂和过充保护添加剂,其中低阻抗成膜添加剂为二氟磷酸锂和硫酸乙烯酯中至少一种,过充保护添加剂为含有苯环的芳香烃或氟代芳香烃化合物。当锂离子动力电池发生过度充电时,本发明中的过充保护添加剂可在电极表面发生氧化聚合或分解产气,瞬间增大电池内阻,阻断电池继续充电,有效避免电池发生燃烧和爆炸;同时,低阻抗成膜添加剂能在电极表面形成稳定的SEI膜,抑制过充保护添加剂与电极发生副反应,并降低电池内阻,进而改善动力电池长循环性能和输出特性。
本发明属于新能源电池制备技术领域,解决了现有技术中匣钵在接受打孔时容易产生位置偏移进而导致打孔位置很不精准的技术问题,提供了一种制备锂电池材料用打孔装置及锂电池材料烧结设备,该制备锂电池材料用打孔装置包括机架以及设置在机架上的输送机构、打孔机构和定位机构;输送机构沿输送方向驱动匣钵向着到达或远离打孔位的方向移动;打孔机构设置在输送机构的上方且包括升降组件和打孔组件,升降组件用于驱动打孔组件向着接近或远离打孔位的方向做升降运动;定位机构用于允许或限制匣钵在输送方向上的位移。本发明制备锂电池材料用打孔装置及锂电池材料烧结设备具有能避免匣钵位置偏移、打孔位置精准的优点。
本发明提供一种半固态锂硫电池复合极片、半固态锂硫电池及其制备方法,所述复合极片包括正极极片或负极极片,以及设置于所述正极极片或负极极片外部的复合固态电解质。所述半固态锂硫电池的裸电芯包括隔膜、至少一片正极极片以及至少一片负极极片,所述隔膜具有连续弯折结构,所述正极极片以及负极极片依次设置于所述隔膜连续弯折形成的凹槽内部,所述正极极片以及负极极片为本发明提供的复合极片。所述半固态锂硫电池复合极片包括设置于外部的复合固态电解质,有效降低了界面阻抗。同时,所述半固态锂硫电池引入隔膜作为支撑,既可保证电池安全,又可实现固态电解质膜厚度的降低,减小电池内阻。
一种锂离子电池正极材料锂镍锰钴氧的制备方 法,该方法包括将含有锂化合物和镍锰钴氢氧化物的混合物进 行一段烧结和二段烧结,其中,该方法还包括在一段烧结后加 入粘合剂和/或粘合剂溶液,所述二段烧结是将粘合剂和/或粘 合剂溶液与一段烧结产物的混合物进行二段烧结。用本发明方 法制得的正极材料锂镍锰钴氧的振实密度达到2.4克/立方厘 米,体积比容量也高达 416.4mAh/cm3。而且用本发明方 法制得的正极材料锂镍钴锰氧具有比容量高和循环稳定性好 的优点。
本发明适用于锂离子电池生产工艺技术领域,提供了一种锂离子电池、锂离子电池芯及其制作方法。其中的锂离子电池芯包括多个单片状第一极性片以及一卷绕式第二极性隔膜条袋,多个单片状第一极性片分别相互对齐排布于卷绕式第二极性隔膜条袋的相邻卷绕层间隔中;卷绕式第二极性隔膜条袋包括顺次叠放的第一隔膜、带状第二极性片以及第二隔膜,且第一极性与第二极性不相同。本发明的锂离子电池芯结合了卷绕式和叠片式的优点,相对于现有技术,其在制作过程中只需对第一极性片进行冲切,而无需对带状第二极性片进行冲切,从而大幅减少了冲切过程中极性敷料的脱落,降低了由此导致的产品不良率,且降低了极片的对齐精度控制难度,提高了产品的生产效率。
本发明公开了一种钴酸锂锂离子电池正极材料,所述正极材料基体化学式为LixCo1‑yMyO2,其中0.95≤x≤1.08,0.01≤y≤0.05,所述正极材料表面具有内外两层包覆结构,其内层包覆结构为Li2ZrO3包覆层,其外层包覆结构为碳纳米管包覆层;Li2ZrO3的质量为钴酸锂基体的0.1%‑5%,碳纳米管的质量为钴酸锂基体质量的0.1%‑1%。本发明方法制得的钴酸锂第一复合包覆层具有良好的化学稳定性,可以抑制钴酸锂基体在高电压下与电解液的接触而导致钴的溶出,减少与电解液发生的副反应,提高循环性能,同时,第二包覆层碳纳米管可以有效的提升材料的导电率,提升其倍率性能。
本发明公开了一种高电压快充型锂离子电池非水电解液,包括非水有机溶剂、电解质锂盐和添加剂,所述添加剂包括至少一种具有式(Ⅰ)结构的硫系化合物。本发明还公开了包括正极片、隔离膜、负极片和上述高电压快充型锂离子电池电解液的锂离子电池。本发明电解液中的硫系添加剂能参与负极成膜,所形成的钝化膜阻抗低,有利于改善负极界面化学动力学性能,对锂离子离子的快速嵌入效果具有很大提升,从而提高了锂离子电池的快充性能。
本发明提供一种锂电池极片及其制备方法及锂电池,属于锂电池技术领域,具体方案如下:一种锂电池极片,包括多孔金属框架和活性物质,所述多孔金属框架的空隙内填充所述活性物质;其制备方法步骤如下:步骤一、将纳米金属材料与活性物质粉体按照一定的比例搅拌混合均匀得到混合粉体;步骤二、将混合粉体压制成片层;步骤三、将片层用平板电极使得纳米金属材料融焊在一起得到多孔金属框架,多孔金属框架的空隙内填充活性物质,制成锂电池极片。一种锂电池,包括隔膜、电解液和含有正极活性物质的正极极片和含有负极活性物质的负极极片。本发明的有益效果是通过增加极片厚度可提高电池能量密度,同时又保证电池具有良好的倍率性能和循环性能。
本发明公开了一种改善富锂锰基锂离子电池循环稳定性的方法,所述方法包括,A、将电池置于高温压力下活化,以第一电流恒流充电到第一电压,再以第二电流恒流充电到第二电压,最后以第三电流恒流恒压充电到第三电压,得A品;B、将A品老化,得B品;C、将B品进行抽气处理,得C品;D、将C品置于一定温度下,以第四电流放电至第四电压;以第五电流使电池在充电电压和放电电压之间充放电循环,得D品;E、将D品老化,得E品;F、对E品进行抽气,封口。本发明可以改善富锂锰基锂离子电池在高电压下充放电循环稳定性差、在循环过程中的电压逐渐衰减的问题,可以促进富锂锰基锂离子电池的商业化,加快了其工业化生产进程。
本发明公开了一种用于高容量锂离子电池的电解液,所述的电解液包括非水溶剂和六氟磷酸锂,所述的电解液含有负极成膜添加剂、抑制正极表面活性添加剂和过渡金属离子络合剂;负极成膜添加剂由占电解液总量1~10wt%的有机酯类负极成膜添加剂和占电解液总量0.5~2wt%的无机锂盐负极成膜添加剂组成;抑制正极表面活性添加剂由占电解液总量1~5wt%的氟醚类添加剂和占电解液总量0.1~5wt%的腈类添加剂组成;所述的过渡金属离子络合剂占电解液总量的0.1~1.0wt%。本发明的目的在于提供一种适用于高容量锂离子电池的电解液,该电解液能够改善该锂离子电池的循环性能,高温存储性能。本发明还提供该电解液的制备方法及采用该电解液的高容量锂离子电池。
一种用于锂离子二次电池的负极活性物质、含有该活性物质的负极、及包括该负极的锂离子二次电池。其中所述的负极活性物质包括由鳞片状天然石墨、球状天然石墨和鳞片状人造石墨组成的混合石墨,其中鳞片状天然石墨占混合石墨总重量的35-70重量%、球状天然石墨占混合石墨总重量的5-45重量%,鳞片状人造石墨占混合石墨总重量的5-30重量%。使用该负极活性物质的负电极的密度达到1.55-1.60g/cm3,使用该负极活性物质的锂离子电池具有较高的可逆容量和较好的循环寿命。
本发明公开了一种从废旧锂离子电池中分离回收锂的方法,将废旧锂离子电池放电后进行拆分,去掉电池外壳;对电池芯进行粉碎;将粉碎后的电池芯用无机酸和氧化剂进行浸出,过滤,得到滤液;将滤液的pH值调到大于或等于8,过滤除去杂质和沉淀,得到含锂离子的回收液;用树脂吸附回收液中的锂离子;对树脂进行解吸附,得到分离回收的锂盐。本发明的回收方法简单、高效、纯度高,而且没有污染。
本发明提供了一种锂离子及锂聚合物电池用正负极金属网,金属网包括基体以及均匀分布于基体上的网孔,网孔内嵌入有活性物质。与现有的金属网的平面网孔不同,本发明的金属网的网孔的筋条凸出于基体,即网孔呈三维立体形状,从而使得网孔可以附着更多的活性物质,进而增加了锂离子及锂聚合物电池的电容量;且活性物质在网孔内不易脱落,避免了电池的微短路,延长了电池的使用寿命。与现有技术通过增大电池体积来增加活性物质含量不同,本发明在不改变电池体积的情况下增加了活性物质的含量,有效节约了电池内部空间,节省了机体材料的用量,减轻了电池的重量。本发明还提供了一种锂离子及锂聚合物电池用正负极金属网的制造工艺。
本发明公开了一种锂离子电池负极片分步预锂化的方法。所述方法包括如下步骤有:提供包括第一预锂化单元、第二预锂化单元和末位预锂化单元至少三个预锂化单元,其中,每个所述预锂化单元包括含锂盐的电解液和用于对锂离子电池负极片进行化成充电的充电模块;将锂离子电池负极片依次引入所述第一预锂化单元、第二预锂化单元,最后引入所述末位预锂化单元中,并依次没入各所述预锂化单元所含的所述电解液内分别进行浸润处理和通过所述充电模块进行充电处理。所述锂离子电池负极片分步预锂化的方法实现分步预锂化,实现对锂离子电池负极片进行均匀补锂和精确补锂。
本公开涉及一种锂离子电池负极材料及其制备方法、负极和锂离子电池。该负极材料包括核壳结构复合材料,核壳结构复合材料包括核材料、内壳材料和外壳材料,核材料为石墨颗粒,内壳材料包括连续相和分散相,分散相包括纳米硅颗粒,连续相包括碳,外壳材料包括金属锂。本公开的锂离子电池负极材料在核材料的表面均匀沉积一层金属锂作为外壳材料,能够在充电过程中提供金属锂电化学沉积的均匀活性点,避免金属锂的不均匀电化学沉积导致生成枝晶;由于表面金属锂的存在,硅能够在首次满嵌锂后的后续循环过程中形成浅充浅放的状态,有效提升了电池的循环性能;该复合材料的体积能量密度极大提升,可超过金属锂的2061mAh/cm3的体积能量密度。
本申请涉及一种锂离子电池涂层隔膜,包括基膜和位于该基膜的至少一个表面上的涂层,其中该涂层包含第一聚合物和第二聚合物,第二聚合物的熔点比第一聚合物高,第二聚合物的平均粒度大于第一聚合物,并且第二聚合物在锂离子电池电芯制作过程中的热压整形温度下能够粘接电池正负极。该涂层中采用两种熔点不同的第一聚合物和第二聚合物,有助于电池使用中发生热失控时两次发挥隔膜孔隙关闭功能。同时,第二聚合物的平均粒度大于第一聚合物,可使涂层隔膜对电池制备过程中的热压整形工序稳定。而且,第二聚合物使隔膜与电池正负极粘接,可以提高电芯硬度。本申请还涉及该锂离子电池涂层隔膜的制备方法和包含其的锂离子电池。
本发明揭示了一种锂电池保护板及锂电池,其中锂电池保护板,包括:FPC软板;所述FPC软板厚度方向的一侧设置有电子元器件;所述FPC软板包括铜皮;所述铜皮的一侧延伸设置有两个延伸铜皮,两个所述延伸铜皮分别用于连接电池电芯的正、负极极耳;所述延伸铜皮和所述铜皮一体成型;旨在解决现有的锂电池保护板存在主板放置电子元器件的区域不足,进而导致电池保护板的生产成本较高的问题。
本发明涉及锂离子电池,具体涉及一种用于锂二次电池的电解液和一种锂二次电池。所述电解液含有添加剂,所述添加剂选自结构式(I)‑(IX)表示的化合物中的至少一种,其中,M选自氢、C1‑C5的烷基;L选自碱金属、银;R1‑R16各自独立地选自氢、卤素、C1‑C5的烷基;n选自1‑5的整数。本发明提供的电解液具有较好的正负极成膜性能和高温性能,极大提高锂二次电池的循环性能。
本发明涉及锂离子电池设计领域,公开了一种锂离子电池的封装方法以及锂离子电池。其池包括电芯体、铝塑膜、电解液、正极耳、负极耳;其中铝塑膜壳体内形成有独立的电芯腔体、气囊腔体,其中电芯腔体密封,气囊上设置有气孔;电芯体、以及电解液封装在电芯腔体内;正极耳以及负极耳均固定在电芯体的一端部,分别与电芯体内的正极片、负极片电连接,正极耳、负极耳上的极耳胶外表层与铝塑膜壳体热熔结合,正极耳以及负极耳与电芯体连接的一端密封在电芯腔体内,另一端均突出在电芯腔体的一端部;气囊腔体位于正极耳、负极耳的对端。采用该结构更有利于节省铝塑膜的成本,提高生产效率以及锂离子电池产品的电性能。
本发明公开一种含硝酸锂的碳酸酯类电解液及其制备方法与在锂金属电池中的应用。所述含硝酸锂的碳酸酯类电解液包括硝酸锂、有机溶剂和碳酸酯类电解液。本发明通过将硝酸锂溶解于有机溶剂中直至饱和状态,在保护气体的保护下,加入碳酸酯类电解液,搅拌,得到含硝酸锂的碳酸酯类电解液。本发明在金属锂表面形成富含Li3N的保护层,提高锂离子传导率,显著抑制了锂枝晶的生长。同时抑制金属锂与电解液之间的副反应,最终提高了锂金属电池的循环寿命和稳定性。本发明制备过程简单,可实现规模化生产,达到高能量密度的可充电电池的使用要求,具有广阔的应用前景。
一种钛酸锂-石墨烯复合材料的制备方法,包括如下步骤:将氧化石墨加入由水和乙醇形成的混合溶剂中超声分散,得到氧化石墨烯悬浮液;向氧化石墨烯悬浮液中加入钛酸锂,超声分散,得到含有钛酸锂及氧化石墨烯的悬浮液;及将含有钛酸锂及氧化石墨烯的悬浮液放置于压力为50Pa~200Pa,温度为180℃~250℃的反应釜内反应3h~10h,过滤后得到钛酸锂-石墨烯复合材料。通过上述钛酸锂-石墨烯复合材料的制备方法制备的钛酸锂-石墨烯复合材料能提高钛酸锂与石墨烯之间的附着力,钛酸锂均匀的分散在石墨烯的片层之间形成一个导电网络,从而应用于锂离子电池可以提高循环性能和倍率性能。本发明还提供一种锂离子电池的制备方法。
本发明公开了对SDH的网络管理系统软件测试和故障定位的方法,所述锂电池用正极,包括锰酸锂、导电剂、粘合剂和用作搭配的活性物质,所述导电剂至少包含碳钠米管、钠米银粉、乙炔黑、石墨粉、碳黑中的一种,所述粘合剂至少包括聚四氟乙烯、聚偏二氟乙烯中的一种,所述用作搭配的活性物质至少包括钴酸锂、镍酸锂、镍钴酸锂、镍锰酸锂、磷酸铁锂、磷酸锰锂、磷酸钴锂中的一种。采用本发明的技术方案,锂离子电池的正极活性物质是以锰酸锂为主,因而电池的安全性能非常好,特别是在正极中混合搭配了本发明中的活性物质后,保障了电池安全性,改善了电池的循环性能,尤其是高温循环性能,在常温下1C充放电循环300次,容量仍可保持80%以上。
本发明公开一种用于锂电池注液的传输系统及其锂电池注液设备,传输系统包括:锂电池上下料流水线、锂电池上下料机械手、锂电池注液转盘、锂电池回收机械手、锂电池回收装置。锂电池上下料机械手衔接于锂电池上下料流水线的中部与锂电池注液转盘之间,锂电池回收机械手衔接于锂电池上下料流水线的尾部与锂电池回收装置之间;锂电池回收装置具有锂电池良品回收区及锂电池不良品回收区,锂电池良品回收区放置有锂电池良品回收托盘,锂电池不良品回收区放置有锂电池不良品回收托盘。本发明的锂电池注液设备,特别是对传输系统的结构进行优化,实现锂电池在上料、注液、下料及回收过程中的高效传输。
本发明提供了一种锂离子电池及锂离子电池组,所述锂离子电池包括若干正极片、若干负极片、若干隔膜纸、第三电极片、三个电极引出端子、第一带孔载流基体和第二带孔载流基体,所述第三电极片包括导电基层和含锂活性层,通过所述第三电极片和正极片或负极片进行初次充放电,使锂离子电池进入预锂化或自修复进程,降低预锂化操作的锂离子消耗,提高了锂离子电池生产效率,降低了预锂化成本,安全性高。本发明的所述锂离子电池组包括若干本发明所述的锂离子电池,锂离子电池组也具有预锂化和自修复功能,大大提高电池的容量和能量,减少电池能量和容量的衰减,提高电池循环使用寿命。
本发明提供固态锂硫电池正极及制备方法、固态锂硫电池及制备方法,固态锂硫电池正极包括正极材料导电集流体以及涂覆在所述正极材料导电集流体上的涂覆材料,所述涂覆材料包括有机硫材料、高盐固态电解质、导电剂,所述高盐固态电解质包括锂盐、高分子材料;其中至少部分锂离子储存在有机硫材料的‑S‑S‑键中。通过锂离子以类似于磷酸铁锂正极材料嵌入储锂的形式,储存在有机硫材料‑S‑S‑键中,极大的降低硫充放电过程中的反应能垒,并且体积变化很小,可以使得固态锂硫电池在室温常压下运行。
本发明涉及一种含锂废料生产高纯度碳酸锂的生产工艺,其生产步骤是:第一步、化学溶解:将含锂废料溶于适当比例的加入了H2O2 的H2SO4溶液中,加热促进溶解;第二步、沉淀:用氨水将第一步的溶解溶液调至碱性;第三步、沉淀洗涤后酸溶解:经过第二步得到的氟化物沉淀再次进行溶解,加入硫酸溶液,搅拌溶解,取硫酸锂滤液;第四步、草酸铵除杂;第五步、纳膜分离;第六步、碳酸锂沉淀:将碳酸氢铵加入到经过第五步分离后的溶液中,沉淀出碳酸锂;第七步、烘干:上述沉淀洗涤后烘干制得高纯度的碳酸锂。它利用含锂废料生产大于99.9%高纯碳酸锂,具有生产工艺简单、成本较低、节能环保等特点。
本申请提供一种锂电池包及用于锂电池包升降的升降装置。上述的锂电池包包括壳体和挂环,壳体包括壳本体、连接凸台、固定件和凸柱;壳本体开设有容纳腔和第一过孔;连接凸台与壳本体连接,连接凸台开设有与第一过孔连通的第二过孔;凸柱分别穿设于第一过孔和第二过孔内,凸柱位于壳本体的外围的端部与挂环连接;固定件位于容纳腔内并与壳本体抵接。由于壳本体开设有容纳腔和第一过孔,连接凸台与壳本体连接,又由于连接凸台开设有与第一过孔连通的第二过孔,以便锂电池包通过挂环快捷地悬挂于升降装置的活动挂件上,实现锂电池包的自动升降,无需技术人员协助搬移,提高了锂电池包的维护方便性,减轻了锂电池包在维护过程中的工作量。
中冶有色为您提供最新的广东有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!