本发明涉及金属基复合材料领域,具体为一种以钛或钛合金纤维增强的镁基复合材料及其制备方法。该复合材料由钛或钛合金纤维编织而成的增强体骨架与镁或镁合金基体组成,钛或钛合金纤维直径为0.5μm~500μm,以体积百分数计,钛或钛合金含量为15%~80%,其余为基体。该复合材料的制备方法为:首先利用钛或钛合金纤维编织增强体骨架,然后将镁或镁合金加热熔化使其浸渗入增强体骨架中,凝固冷却后得到复合材料。本发明的复合材料在不明显增加比重的前提下,显著提高镁和镁合金的室温和高温强度,并且具有良好的塑性、断裂韧性和抗冲击性能,其力学性能通过调节增强体的编织结构进行控制,因而作为轻质结构材料具有可观的应用前景。
本发明公开了一种轻质泡沫白榴石陶瓷复合材料的制备方法,利用无机聚合物前驱体转化法,将白云石微珠作为造孔剂引入可发泡无机聚合物中,富了复合材料多级孔结构,高温处理获得轻质泡沫白榴石陶瓷复合材料。本发明的制备过程为:1.无机聚合物前驱体激发液的制备;2.可发泡的含白云石空心微珠的无机聚合物前驱体混合浆料配置;3.固化成型;4.陶瓷化。本发明克服了多孔白榴石基陶瓷复合材料的绿色制备问题,实现了大尺寸泡沫陶瓷基复合材料的低成本制备,降低了复合材料的密度,提高了强度,获得的材料可用于环境保护,水土保持、吸附过滤等领域。该方法成本低廉,原料来源官方,成型工艺简单,绿色环保无污染,适宜大尺寸大规模生产。
本发明负压逆向冷却的纤维增强复合材料高质量加工方法属于切削加工技术领域,涉及一种纤维增强复合材料高质量钻削制孔的加工方法。该方法在钻削由多层预浸料铺放固化而成的纤维增强复合材料工件不同位置时,实施不同的冷却工艺。首先利用负压罩在纤维增强复合材料制孔过程中贴附于复合材料表面,利用气泵在负压罩及钻削孔腔内产生负压,迅速收集钻削粉尘以及切屑,并通过刀具气泵在钻头内冷孔附近产生正压,辅助切屑降温。在钻削至材料最后几层时,钻头内冷孔由正压通气改为负压吸气,对出口部位材料产生较大的负压,为钻削过程提供支撑,利于钻头切削刃切断纤维。该方法有效降低了毛刺以及分层等缺陷,实现纤维增强复合材料高质量制孔加工。
为了改善粉末合金的硬度、耐磨性,设计了一种多元陶瓷增强Cu基复合材料。采用Cu基预合金粉,多元陶瓷SiC、Si3N4、B4C粉末,块状石墨为原料,所制得的多元陶瓷增强Cu基复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,随着SiC、Si3N4、B4C多元陶瓷质量分数的增加,SiC、Si3hi,B4C多元陶瓷/Cu基复合材料的相对密度逐渐下降,孔隙率逐渐增加,复合材料内部的晶界、晶格畸变、位错等缺陷增加了晶格波散射,减小了平均自由程,使复合材料的热导率降低。通过退火以及二次挤压等方法进一步处理来提高材料致密度,减少烧结体内的位错、孔隙等缺陷,提高导热性能。本发明能够为制备高性能的Cu基复合材料提供一种新的生产工艺。
一种考虑BVID冲击损伤影响的复合材料开口分析方法,1)通过冲击损伤后结构的剩余强度得到最危险的损伤距离,确定引入的BVID到复合材料大开口结构孔边的危险距离;2)确定复合材料开口设计许用值的计算公式及修正系数计算公式;3)设计可求出修正系数的试样级试验矩阵;4)基于试验结果计算许用值修正系数的参数,得到复合材料开口结构设计许用值。5)根据开口的几何特征、曲率半径变化确定开口区的危险位置,基于有限元方法提取工作应变,确定强度分析公式。本发明通过上述方法,提供了一种能够降低研发成本、提高复合材料结构效率,缩短设计周期的一种考虑BVID冲击损伤影响的复合材料开口分析方法。
本发明涉及复合材料技术领域,特别涉及一种有机无机杂化复合材料及其制备方法。复合材料为第一组分多异氰酸酯或改性多异氰酸酯和第二组分金属盐溶液或类金属盐溶液的混合,两组分质量占比为10:1‑1:5。复合材料制备方法为1)按上述比例取第一组分多异氰酸酯,待用;2)经水溶解金属盐溶液或类金属盐溶液调节溶液浓度为质量分数20%‑90%的第二组分,待用;3)将第一组分加入至第二组分中两组分占比10:1‑1:5,两者充分混合,25℃±3,湿度50%±10,固化24小时,即得到有机无机杂化复合材料。本发明得到的有机无机杂化复合材料有机无机分布均匀,结构致密,无机组分尺寸达到纳米尺寸。本发明采用金属盐溶液或类金属盐溶液替代碱金属硅酸盐生成新型无机组分,强度高、模量高、耐高温、耐腐蚀、力学性能好、反应速率快、成本低等特点。
本发明涉及仿生复合材料领域,具体为一种以纳米碳材料增强的金属基仿生复合材料及其制备方法。该复合材料由纳米碳材料和金属组成,以体积百分数计,纳米碳材料含量为0.5%~40%,其余为金属;所述的复合材料微观上具有仿生定向结构,表现为纳米碳材料以片层形式在金属基体中定向排列。本发明通过采用浆料配制、冷冻铸造、真空冷冻干燥、去有机质和致密化处理的工艺流程制备以纳米碳材料增强的金属基仿生复合材料。本发明的复合材料具有轻质、高强、耐磨等优异性能,同时保留基体金属的电磁屏蔽、导电、导热等功能特性,并且其组织结构和性能可以通过调整制备工艺进行有效控制,因此作为吸波材料、结构材料等具有可观的应用前景。
一种曲面纤维增强树脂基(Fiber Reinforced Plastic,FRP)复合材料单向板R区声线示踪算法,属于复合材料超声检测技术领域。该算法获得FRP复合材料单向板声速关于空间位置和声传播方向角变化的函数关系式,将R区沿周向和厚度方向网格化;使用Dijkstra最短路径搜索算法计算起始和目标点之间的超声波传播路径和时间。该算法可实现曲面FRP复合材料单向板R区声传播路径和时间的精确快速计算,能够为定量评价声传播行为、相控阵超声成像检测等提供核心数据,对复合材料构件质量检测与性能评估具有重要意义。实现了曲面FRP复合材料单向板R区任意两点之间的声传播路径反演重建,计算速度快,能够用于定量描述声传播路径,并可满足相控阵超声成像检测对于反演重建大量声线路径的需求。
本发明提供一种抗氧化炭/炭复合材料板材的制备方法,以炭/炭复合材料板材自身为发热体,以金属硅粉为浸渗剂,进行熔融浸渗硅化,其特征在于:在炭/炭复合材料板材的一面均匀地涂覆一层硅粉,将涂有硅粉面朝上水平装入硅化炉中,两端与电极连接,通电使硅粉熔融后渗入炭/炭复合材料板材内部,发生硅化反应生成SiC防护层;硅粉熔融浸渗、硅化反应的温度为1414~2000℃;硅粉熔融浸渗、硅化反应过程在非氧化条件下进行。该方法的优点在于:生产周期短,耗电量少,制备成本更低,对环境无污染;可以批量生产大尺寸抗氧化炭/炭复合材料板材;整个制备过程在微正压下进行,对设备要求不高,投资小;制备的炭/炭复合材料板材密度高,耐磨损,抗氧化。
本发明公开了一种具有非均匀结构的高强韧碳纳米管增强铝基复合材料及其制备方法,属于复合材料制备技术领域。采用在球磨过程中先预磨高含量的碳纳米管/铝复合材料粉末,再每隔一段时间添加较低含量的碳纳米管/铝复合材料粉末球磨,最后添加铝合金粉末,由此在冷焊作用下复合材料微区形成碳纳米管含量的梯度变化。此外,由于后加入的复合材料粉末经历球磨时间短,晶粒细化程度小,从而形成微区的晶粒尺寸梯度分布。将粉末进行后续致密化及二次加工得到最终的复合材料,表现出远高于均匀结构复合材料的强韧性。
一种考虑变形的复合材料板钻削分层临界轴向力计算方法,针对厚度较小的碳纤维复合材料钻削分层缺陷,考虑在钻削过程中复合材料构件的弯曲变形对钻削分层的影响,计算出产生分层缺陷的临界轴向力,有效预测在钻削过程中的分层缺陷。同时考虑刀具横刃和主切削刃的共同作用,把刀具横刃部分受到的轴向力等效为集中力作用,而刀具主切削刃受到的轴向力等效为均布力作用,运用虚位移原理最终求出考虑复合材料整体和局部弯曲变形的钻削分层临界轴向力。本发明充分考虑了刀具在钻削过程中的受力情况以及复合材料的变形情况,建立碳纤维复合材料钻削分层缺陷预测模型,计算出了钻削分层临界轴向力,对抑制碳纤维复合材料钻削分层缺陷具有很好的作用。
本发明一种钛基非晶/钛合金层状复合材料及其制备方法,属于金属基复合材料技术领域。该复合材料由钛基非晶层和钛合金层组成,钛基非晶合金与钛合金层相间排布,形成层状结构。该层状复合材料通过瞬间液态连接法制备,即将选定的钛基非晶带和钛合金带相间叠制成预制体,然后加热熔化、保温、水淬,得到钛基非晶/钛合金层状复合材料。该复合材料的非晶相层和钛合金层在二维空间连续均匀分布,协同变形,相互强化,使得材料的强度和塑性同时得到了明显改善。该复合材料具有优良力学性能、高比强度、微观结构均匀可控等特点,具有广阔的应用前景。
本发明公开了一种SiC纤维增强Ni合金基复合材料及其制备方法,属于航空发动机用镍基合金复合材料技术领域。通过制作SiC先驱丝预制体、在粘结剂中添加适量钎焊料的方法,采用真空热压技术合成了SiCf/Al2O3/Ni合金基复合材料。该复合材料纤维排布均匀,纤维与基体结合良好无孔洞,弹性模量等力学性能得到明显提高。本发明在制备过程中所涉及的添加剂(钎焊料)的使用,有效地降低了材料合成温度、抑制过度的界面反应,显著改善了纤维与基体的界面结合,对于SiC纤维增强Ni合金基复合材料的研究和实际应用具有重要意义。
本发明涉及材料性能的仿真测试技术领域,特别涉及一种双连续相复合材料的仿真模拟方法。该方法包括:步骤一、采用Cahn‑Hilliard方程对双连续相复合材料的结构进行模拟,得到所述双连续相复合材料的结构的模拟方程;步骤二、采用中心差分方法对所述模拟方程进行离散处理,得到差分方程;步骤三、根据所述差分方程获取双连续相复合材料所有组分相坐标位置信息;步骤四、将所述所有组分相坐标位置信息嵌入有限元软件,得到双连续相复合材料的仿真模型。本申请能够获取能够描述双连续相复合材料力学行为的计算模型,该模型不仅能够描述双连续结构的空间分布,而且基于该模型的有限元分析可以预测双连续相复合材料的力学性能,方法简单,效率高,成本低。
一种陶瓷增强Fe‑Cr‑B合金复合材料及其应用和制法,属于合金复合材料领域。该陶瓷增强Fe‑Cr‑B合金复合材料包括金属陶瓷复合材料增强块体和浇注用合金材料;金属陶瓷复合材料增强块体之间为浇注用合金材料;浇注用合金材料为浇注用Fe‑Cr‑B合金装甲用钢或铸铁;金属陶瓷复合材料增强块体中陶瓷增强颗粒为增强相,陶瓷增强颗粒均匀分散在Fe‑Cr‑B基体合金中;在制备过程中,将金属陶瓷复合材料增强块体均匀摆放于砂型中,再在金属陶瓷复合材料增强块体之间的缝隙中浇入浇注用合金材料,并经过热处理,使得整个防弹和/或耐磨金属陶瓷复合板性能提升,并且无裂纹,无明显空洞、偏析等宏观缺陷。
本发明属于超高温陶瓷基复合材料领域,具体涉及一种避免热不匹配的碳纤维增韧超高温陶瓷基复合材料及其制备方法。在碳纤维的截面方向上,具有n层以碳纤维为中心从内到外热膨胀系数逐渐变大的梯度陶瓷基体,陶瓷基体原料包括:二硼化物超高温陶瓷、碳化硅和二硅化锆;所述的二硼化物超高温陶瓷包括二硼化锆或二硼化铪;制备方法是在碳纤维上电泳沉积n层径向梯度陶瓷涂层,然后热压烧结得到复合材料。本发明的效果和益处:解决了碳纤维与基体热不匹配的问题,提升了复合材料的机械性能,避免了复合材料抗氧化、抗烧蚀性能的下降;设计的梯度陶瓷基体,提高了复合材料的抗断裂性能和抗热冲击性能;优化了基体组分,提升了复合材料的耐超高温性能。
本发明提供一种插入cohesive单元的颗粒随机分布增强复合材料微观有限元建模方法,包括以下步骤:简化材料结构并构建微观模型;分析复合材料中颗粒相、基体相和界面相的尺寸参数及成分占比;设置基体区域,所有增强相颗粒均在所述基体区域内生成;根据所述基体区域通过随机分布算法建立颗粒随机分布增强复合材料模型;通过中性轴算法对所述颗粒随机分布增强复合材料模型进行网格划分;基于有网格的有限元模型,建立插入0厚度cohesive单元的颗粒随机分布增强复合材料模型;获取整体模型。本发明为建立插入cohesive单元的颗粒随机分布增强复合材料有限元模型提供了经济而有效的方法,此方法适用于不同材质颗粒增强的复合材料,为有限元模拟提供了更好的基础,同时减少此类材料的实验加工的成本。
一种感应熔覆梯度硬质复合材料涂层工艺,属于材料表面工程技术领域。在金属零件表面预涂硬质相与金属相复合的梯度涂层,该预涂层具有硬质相含量由内层到外层依次增加的成分梯度分布,硬质相体积百分比含量在0-90%范围变化,在保护气氛中感应加热重熔预涂层,通过各层之间互扩散形成与金属零件基体界面冶金结合、致密无裂纹的连续梯度硬质复合材料涂层。采用梯度硬质复合材料预涂层,解决了传统感应熔覆硬质涂层冶金结合造成的热应力过大,激光束、电子束和等离子体束流熔覆导致涂层集中冲击热应力,以及零件整体加热钎焊烧结涂层带来的基体组织劣化等问题;连续梯度硬质复合材料涂层满足零件耐磨抗蚀抗冲击等高性能需求。
一种纤维增强复合材料三维随机孔隙模型的建立方法,属于复合材料无损检测与评价领域。这种纤维增强复合材料三维随机孔隙模型的建立方法首先对纤维增强复合材料标准样品进行解剖,通过金相法统计孔隙率及孔隙分布特征,根据统计结果建立三维随机介质模型M(x,y,z);然后利用极值搜索法改造三维随机介质模型M(x,y,z),建立三维随机孔隙模型,统计三维随机孔隙模型的孔隙率及孔隙分布特征;最后对三组孔隙率及孔隙分布特征进行数据比较,若二者差异小于2%,则得到纤维增强复合材料三维随机孔隙模型,该方法可精确建立纤维增强复合材料三维随机孔隙模型,利用该模型可开展纤维增强复合材料孔隙的弹性性能分析,为纤维增强复合材料孔隙率超声无损检测提供分析依据。
本发明公开了一种用于锂离子电池负极的硅-锡复合材料及其制备方法,该负极复合材料呈锡纤维缠绕硅颗粒复合结构,由硅、锡两种元素组成,其中硅含量为20-70at.%,余量为锡。所述负极复合材料的制备方法为,将硅与锡粉末混合,采用高能球磨的方法在氩气气氛保护下对混合粉料进行球磨;在高能冲击下金属锡颗粒发生剧烈变形、冷焊以及撕裂形成锡纤维;在继续球磨的过程中,经过高能球磨后形成纤维状结构的韧性相金属锡与在球磨过程中经高能撞击下粉碎细化的硅颗粒复合,形成锡纤维缠绕硅颗粒复合结构。这种新型纤维缠绕包裹型含硅复合材料制备工艺简单、成本低,同时,该复合材料的结构新颖、独特,电化学性能优异,具备非常好的应用前景。
一种利用磁场制备原位形变Cu-Ag复合材料的方法,属于材料技术领域,按以下步骤进行:(1)以无氧铜和电解银为原料,制成Cu-Ag合金液或Cu-Ag合金锭;(2)置于真空电炉中,保温后随炉冷却,同时施加稳恒磁场或交流磁场,获得铸态Cu-Ag合金;(3)将铸态Cu-Ag合金保温后热锻,制成形变Cu-Ag合金;(4)将形变Cu-Ag合金拉拔制成形变Cu-Ag复合材料;(5)将形变Cu-Ag复合材料真空热处理,然后再次拉拔;(6)依次重复步骤(5),获得原位形变Cu-Ag复合材料。本发明的方法有效改善Cu-Ag合金的极限抗拉强度和导电率,制备的复合材料中性能上有较大提高。
一种纳米吸波薄膜功能化改性复合材料层压板的方法,按以下步骤进行:一种纳米吸波薄膜功能化改性复合材料层压板的方法,包括如下步骤:(1)?将纳米粒子与聚芳醚树脂配制成均一稳定的树脂溶液;(2)?采用薄膜制备工艺将配制好的树脂溶液制备成纳米吸波薄膜;(3)?将连续纤维或纤维织物与树脂基体充分浸渍制备复合材料预浸料;(4)?将纳米吸波薄膜铺覆于复合材料预浸料的铺层间,按照复合材料成型工艺制备结构/功能一体化隐身复合材料层压板。本发明所达到的有益效果是:将吸波功能层集成于复合材料层压板的制备过程中,大幅度而又低成本地同步提升复合材料整体的吸波功能和力学性能。制品兼具优异的承载和隐身双重功能,在航空航天工程领域具有广阔的应用前景。
一种复合材料损伤自诊断系统,其特征是方法步骤为:(1)通过电阻测量仪测量不同类型的复合材料在拉伸、冲击、弯曲外力作用前后的电阻值,建立复合材料应力一电阻数据库,利用超声扫描方法检测复合材料损伤,确立损伤一电阻变化的对应关系;(2)计算机对复合材料电阻变化进行分析、处理,实时诊断复合材料中是否存在损伤,并自动生成复合材料状况示意图。?本发明的优点是:利用复合材料的导电特性,将复合材料作为其本身力学、电学性能的感应元件,达到复合材料损伤自诊断目的。?该系统具有实时监测、诊断准确、直观明了的特点。
一种大批量自动化的复合材料动态疲劳耐久性试验系统及方法,系统包括三层立体封闭环形机架,机架底层设为试样动态疲劳测试区,机架中层设为试样存储区,机架顶层设为试样疲劳损伤检测区,机架中间设有机械臂。方法为:通过机械臂在试样存储区夹取复合材料试样,先将复合材料试样移至试样疲劳损伤检测区内,通过区内悬臂梁反向共振疲劳试验机构对复合材料试样进行热环境下的动态疲劳耐久性试验,直至复合材料试样发生疲劳破坏,再将发生疲劳破坏的复合材料试样移至试样疲劳损伤检测区,复合材料试样先放置到试样托盘上,再移动载有复合材料试样的托盘至试样疲劳损伤检测箱内完成疲劳损伤检测,判断是否需要人工二次检测,并分别移至对应回收箱中。
本实用新型提供一种复合材料推力轴承在线监测油膜温度的装置,包括复合材料推力轴承和在线监测油膜温度组件,复合材料推力轴承主要由瓦基体和设置在瓦基体上的复合材料瓦面组成;复合材料推力轴承上设有用于安装在线监测油膜温度组件的渐缩式阶梯状安装孔,安装孔贯穿瓦基体和复合材料瓦面,且安装孔轴线垂直于复合材料瓦面,并设置在复合材料推力轴承油膜温度最高处;复合材料瓦面上设有U型泄油槽;在线监测油膜温度组件包括油膜温度传感器及套设在油膜温度传感器探头外部的传感器隔热套。本实用新型可准确地在线监测复合材料推力轴承瓦面的最高油膜温度,判断轴承的运行状态,克服现有技术瓦体温度测量误差大,至使报警滞后易造成事故的问题。
本发明的目的为了解决现有技术中碳化硅增强氧化铝基复合材料存在的问题,提供了一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法,属于氧化铝基复合材料技术领域。本发明的材料由石墨烯包覆碳化硅复合材料和Al2O3基体组成,石墨烯包覆碳化硅复合材料均匀的分别在Al2O3基体中。该方法首先用石墨烯对碳化硅进行包覆,该过程中不需要先单独制备石墨烯,而是将片层石墨和碳化硅纳米颗粒进行湿法球磨,直接获得包覆石墨烯的碳化硅颗粒,整个制备过程一步完成;再用这种包覆石墨烯的碳化硅作为增强相与氧化铝复合,提高氧化铝基材料的致密性、导电性能和力学性能。
本发明公开了一种高致密度陶瓷基复合材料及其制备方法和应用,二硼化锆-二硅化锆-碳化钨陶瓷基复合材料,是以二硼化锆粉末、二硅化锆和碳化钨为原料(纯度>98.0%),采用两步热压烧结工艺制备的。其中,二硼化锆粉末的质量份数为75~90%,在陶瓷基复合材料中加入较高含量的二硼化锆,有利于提升复合材料的物化性能;二硅化锆的质量份数为10~15%,将此质量份数的二硅化锆加入到陶瓷基复合材料中,能够明显降低材料制备的烧结温度;碳化钨的质量份数为0~10%,加入的碳化钨能够促进材料内部晶粒的各向异性增长。三种原始粉末的晶粒尺寸为1~5微米,此范围的晶粒尺寸有利于各相的均匀混合。本发明用作高超声速飞行器表面隔热层,具有高致密度、高力学性能的特点。
本发明提供了一种利用富硼渣制备MGALON基复合材料的方法,其特征在于:第一步采用MGO含量为30~40%的富硼渣为主要原料,先将块状富硼渣制成富硼渣粉,然后将富硼渣粉细磨、筛分;将筛分后的富硼渣粉与含铝化合物和炭黑混合,制备成混合坯料;然后将混合坯料压制成圆坯,经过烧结制备成MGALON复合粉体;第二步将制备好的MGALON复合粉体与添加剂混合,压制成圆坯,经过烧结制备成MGALON基复合材料。本发明的特点在于利用冶金废渣为原料制备MGALON基复合材料,降低材料的生产成本,合成的MGALON基复合材料具有各种优异性能,可以广泛应用于冶金及陶瓷等领域。本发明工艺简单,生产成本低,对于富硼渣的综合利用具有重要意义。
本发明公开了一种复合材料管材外表面涂装底漆的装置,包括上部设有涂料入口(2)的盒体(3),盒体一个投影方向的两侧中部对应开设有盒体圆孔,在两侧盒体圆孔处位于盒体外侧分别密封固定有弹性橡胶板(1),在每一橡胶板中部对应盒体圆孔开设有板上圆孔;其中,待涂装复合材料管材(5)的外径大于板上圆孔的孔径,并小于盒体圆孔的孔径。本发明还提供了基于上述涂装装置实现复合材料管材外表面底漆涂装的方法。本发明复合材料管材外表面涂装底漆的装置和方法具有结构简单、方法快捷、涂装质量好、污染小等优点。
为了改善铝基复合材料的硬度、耐磨性,设计了一种纳米SiCp/108Al复合材料。采用Al粉和纳米SiC颗粒为原料,所制得的纳米SiCp/108Al复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,纳米SiC颗粒的加入对108Al基体有着较强的增强作用,复合材料微观组织中晶粒明显细化,复合材料的组织较为致密,颗粒分布较为均匀,纳米SiC颗粒与108Al基体结合较好,性能达到最优。当纳米SiC颗粒体积分数过高时,出现明显的团聚现象,复合材料的组织中出现了较多孔洞缺陷,物理机械性能均降低,强化作用不明显。本发明能够为制备高性能的铝基复合材料提供一种新的生产工艺。
中冶有色为您提供最新的辽宁有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!