一种镀Cu短碳纤维增强Cu基复合材料,通过粉末冶金制备了短碳纤维增强Cu基复合材料以提高Cu基复合材料的密度、硬度及电导率等性能。采用380℃灼烧30min为较佳的碳纤维除胶工艺;与超声分散和磁力搅拌相比,采用电动搅拌时短碳纤维分散性好,且化学镀Cu镀层均匀致密。随着镀Cu短碳纤维含量的增加,复合材料的密度和电导率呈现下降的趋势,硬度呈现先提高后降低的趋势,其中在镀Cu短碳纤维含量达12.5%时,Cu基复合材料硬度值最高;镀Cu的短碳纤维Cu基复合材料的物理性能优于未镀Cu的短碳纤维复合材料。
一种碳/碳复合材料表面复合陶瓷涂层的制备方法,属于航空航天技术领域,具体步骤为:按物质的量比取Si,SiC和MoSi2粉混合,并按配比加入粘结剂,充分混合形成混合物;向混合物中加入去离子水调成粘稠状的悬浊液,静置后再次搅拌均匀,将悬浊液均匀涂覆在C/C复合材料表面,形成预涂层;经风干预烘干处理,形成表面涂有SiC‑MoSi2预涂层的碳/碳复合材料试样,放入模具中进行煅烧,SiC‑MoSi2预涂层与碳/碳复合材料基体发生化学反应,制得碳/碳复合材料表面SiC~MoSi2复合陶瓷涂层。该发明制得的碳/碳复合材料表面SiC~MoSi2复合陶瓷涂层经扫描电镜和金相显微镜测试与基体结合紧密,且具有较好的抗氧化和耐烧蚀性能。
本发明属于聚合物性能表征技术领域,具体涉及一种碳纳米纸传感器监测聚合物基复合材料Tg的方法。本发明是将四根铜导线固定于长方形碳纳米纸表面形成碳纳米纸传感器,将此传感器埋入待监测聚合物基复合材料的预浸料内部,按聚合物基复合材料预浸料的标准固化工艺,固化成型得到聚合物基复合材料,再次加热复合材料,利用四探针电阻测量仪测量复合材料内部碳纳米纸传感器电阻,得到复合材料固化成型后升温过程的碳纳米纸传感器电阻变化‑温度关系曲线,曲线的电阻变化突变点即为复合材料的玻璃化转变温度。本发明方法的测量过程简便、宜行,传感器及解调系统成本低,最主要是能够实现工程应用领域复合材料成型过程的实时在线监测。
本发明公开了一种离子交换树脂制备纳米硫化复合材料的方法,属于无机纳米材料制备领域,采用改性后的D113型阳离子交换树脂,提供硫化复合材料的构成阳离子,在适宜的外场环境中,与含硫离子溶液发生转移交换与吸附,最终制备纳米硫化复合材料;所述硫化复合材料的构成阳离子为能够与硫离子稳定结合的阳离子,如Zn2+、Cd2+、Mn2+、Co2+、Ag+等。本发明方法所得纳米硫化复合材料的制备工艺简单,生产周期短;产率高,产品稳定性好;离子交换树脂可循环使用,降低了生产成本;产物与离子交换树脂直接分离,烘干得到粉体,无废水的排放。本发明制备的纳米硫化复合材料广泛用于光催化剂、吸附剂、助燃剂、气敏元件等多个行业。
本发明一种多压电纤维复合材料驱动的悬臂梁控制方法属于悬臂梁控制领域,涉及一种多压电纤维复合材料驱动的悬臂梁控制方法。控制方法先确定两对压电纤维复合材料在悬臂梁表面上的粘贴位置,采用一个非接触式的高分辨率激光位移传感器测量悬臂梁自由端位移信号,则整个系统视为一个两输入单输出系统。分别建立两个子系统的动态模型,根据每个子系统及系统整体的输入输出关系,确定每个子系统占比系数;考虑建模误差及子系统之间的相互耦合,基于H∞鲁棒控制理论分别为每个子系统设计鲁棒控制器。采用分时控制方法,实现对多压电纤维复合材料驱动的悬臂梁系统的精确控制。控制方法实现简单,控制精确,能发挥压电纤维复合材料的最大性能。
本发明公开了一种复合材料层压板修补方法。所述复合材料层压板修补方法包括如下步骤:步骤1:配比与复合材料层压板的待修补位置等刚度的混合修补物的步骤;步骤2:通过所述混合修补物修补待修补位置的步骤。本发明的复合材料层压板修补方法能够配比与复合材料层压板的待修补位置等刚度的混合修补物,并通过混合修补物修补待修补位置,从而使经过混合修补物修补后复合材料层压板具备与未经修补的复合材料层压板同样的刚度,从而实现待修补位置在经过修补后能够实现其在复合材料层压板中应有的作用。不仅修补了原复合材料层压板成型后所存在的外型上有缺损、或者尺寸未能满足设计需要等问题,还能够实现复合材料层压板在设计时所需实现的目的。
本发明属于一种液晶高分子助剂复合材料及其制备方法,属于高分子材料领域。本发明的液晶高分子助剂复合材料由带有离子基团的液晶高分子助剂和树脂复合而成,带有离子基团的液晶高分子助剂的质量为复合材料总质量的5‰~20%,余量为树脂;树脂为选自ABS-38。制备方法:先制备带有离子基团的液晶高分子助剂;然后将步骤一制备的带有离子基团的液晶高分子助剂与树脂混合,经双螺杆挤出机熔融挤出,挤出的料条经过水槽冷却后切粒得到产品。本发明液晶聚合物原位复合材料应用在汽车零部件、精密电子仪器、光导纤维、医疗器械、防水材料、纺织领域、绝缘材料、储能材料、防弹衣或降落伞领域。
本发明涉及Ti基非晶内生复合材料领域,具体为一种通过添加Al提高Ti基非晶内生亚稳β‑Ti复合材料屈服强度的方法。合金体系为Ti‑Zr‑Cu‑Be‑(Al),其成分范围按照以下原则进行变化:(Ti0.474Zr0.34Cu0.6Be0.126)100‑xAlx(原子百分比),x=0,4,6,8。本发明通过调节Al元素含量,发现Al元素改变其他组元在β‑Ti和非晶基体中的组元配分系数,进而实现β‑Ti相稳定性的提升;另外,Al原子本身和其他原子容易形成具有更高强度的类共价键结合。这两方面的因素导致Al添加可以显著提升相变型Ti基非晶内生复合材料的屈服强度,该发明对于非晶复合材料的开发与应用具有重要价值。
一种橡胶/介孔分子筛纳米复合材料的制备方法,涉及纳米复合材料技术领域,包括:橡胶、介孔分子筛、改性剂按100∶0.5-20∶0.5-10的质量比通过混炼设备和工艺进行混合,然后通过普通硫化工艺和设备进行硫化,实现原位改性,最终获得具有纳米级分散、界面结合良好、性能优良的橡胶/介孔分子筛纳米复合材料。其中介孔分子筛是具有特殊结构的纳米级介孔分子筛颗粒。改性剂包括甲基丙烯酸酯类系列、表面活性剂系列、偶联剂系列中的一种或一种以上混合物。本发明能克服橡胶/介孔分子筛纳米复合材料分散困难、界面结合不好、性能难以获得显著提高的缺点,可应用于各种橡胶制品、橡胶增韧塑料、黏合剂等。
本发明公开了一种水泥基导电复合材料的电极制作方法,属于土木工程技术领域。其特征是将平面不锈钢网制成不同波形的立体不锈钢网,制作水泥基导电复合材料试件时,须将两个立体不锈钢网电极的波峰相对布设;因为水泥基导电复合材料的基体可以是水泥净浆、水泥砂浆或混凝土,而掺入的导电相可以是碳纤维、碳粉、钢纤维、钢屑、石墨或碳纳米管,因此实际应用中除了考虑试件的类型和尺寸,还需要根据基体材料和导电材料的类型合理选择平面不锈钢网的网格尺寸,立体不锈钢网电极的波形、周期、振幅。本发明的有益效果是能够减小电极与基体之间的接触电阻,削弱极化效应的影响,增大电极与骨料的咬合作用,提高水泥基导电复合材料电阻测试的准确性。
本发明公开了一种基于AML方法复合材料压缩强度设计许用值试验方法,所述基于AML方法复合材料压缩强度设计许用值试验方法包括如下步骤:步骤1:通过积木式试验元件级试验阶段获取复合材料的工艺批次影响因子、湿热环境影响因子以及厚度影响因子;步骤2:通过积木式试验组件级试验阶段获得复合材料冲击后压缩强度基本值;步骤3:通过公式以及所述步骤1及步骤2中获得的数据,获取复合材料压缩强度设计许用值。采用本申请的基于AML方法复合材料压缩强度设计许用值试验方法能够解决以往试验方法所获得的复合材料压缩强度设计许用值偏差大,试验件数量多,试验周期长,试验结果受尺寸效应、边界条件和载荷分配等约束条件影响较大的工程实际的问题。
本发明提供的具有抗微生物侵蚀性能水泥基复合材料采用纳米二氧化钛作为功能填料,解决了以往杀菌剂掺入导致水泥基材料力学性能下降的问题。而且,本发明提供的具有抗微生物侵蚀性能水泥基复合材料对微生物的抑制率和灭杀率远高于现有的水泥基复合材料。另外,该种水泥基复合材料具有抗微生物侵蚀性能长效、抗微生物侵蚀范围广泛以及对人体无害的优势。将该种水泥基复合材料应用于存在大量微生物的污水管道、排水管道、净水厂沉淀池/过滤池以及海洋结构物中,有利于提高结构物的抗微生物侵蚀性能,延长结构物的使用寿命,降低结构物的全寿命周期成本。此外,将该种水泥基复合材料应用于净水系统可以起到净化水的作用。在医院、住宅、学校以及办公场所等基础设施应用该种水泥基复合材料,可能起到灭杀病毒、防止病毒传播和繁殖的作用。
本发明涉及一种激光熔化沉积不锈钢基复合材料所用粉料及制备方法,选择不锈钢合金粉末的质量分数为69%‑90%;Cr3C2粉末的质量分数为7%‑20%;Ti粉末的质量分数为3%‑11%的配比,利用激光熔化沉积原位反应合成增强相技术,制备出TiC增强不锈钢基复合材料,显著缩短了现阶段制备金属基复合材料的生产周期,提高制造效率和精度,使制备出的复合材料组织均匀致密,机械性能良好,从而显著提高激光熔化沉积不锈钢构件的使用寿命,同时减少了贵金属的加入,降低不锈钢的生产成本,具有巨大的经济效益和社会效益。
本发明提供一种原位双相颗粒增强铜基复合材料及其制备方法,复合材料Cu‑M‑AxBy的制备方法包括以下步骤:按照反应生成AxBy所需比例配备原料;将A,B和M分别熔炼为Cu‑A、Cu‑B和Cu‑M的中间合金;将Cu置于真空中频感应熔炼炉坩埚内,抽真空后加热至Cu完全熔化,依次将位于加料斗中的Cu‑A、Cu‑B和Cu‑M中间合金分别加入到真空中频感应熔炼炉坩埚内;加入中间合金后待反应一段时间,然后浇铸至铸模中;将所得铸坯固溶处理、时效处理,制备得到原位双相颗粒增强铜基复合材料Cu‑M‑AxBy。该方法简单、易行,采用该方法能制备得到具有较高强度,良好电导率以及较高耐磨性的颗粒增强铜基复合材料。
本发明涉及复合材料技术领域,具体涉及一种树脂基Ni-Co-Mn-In合金复合材料及其制备方法。本发明的树脂基Ni-Co-Mn-In合金复合材料,由弹性模量为0.45Gpa的树脂和Ni45Co5Mn36.6In13.4合金组成,其粒度为20~60μm。首先将Ni-Co-Mn-In合金材料球磨至粒度为20~60μm后与树脂混合均匀,使合金材料占复合材料的体积百分比为25%~50%,然后将混合后的材料在60℃的水浴中搅拌混合20~40分钟,制成混合物料料浆,再将料浆倒入模具,干燥,固化,最终获得树脂基Ni45Co5Mn36.6In13.4合金材料。
本发明公开了一种SiC纤维变角度增强Ti基复合材料管轴件及其制备方法,属于复合材料制备技术领域。所述管轴件的Ti合金管壁中设有变角度SiCf/Ti基复合材料中间层,所述变角度SiCf/Ti基复合材料中间层包含三层以上的SiC纤维层,SiC纤维层内的SiC纤维轴向与管轴件轴向的夹角介于-90°~90°之间;本发明管轴件的纤维增强角度实现了变角度可调,变角度增强方式有效降低了管轴的各向异性程度,提高了复合材料管轴的扭曲刚度、横向刚度和抗冲击能力,有利于拓展SiCf/Ti基复合材料管轴件的应用范围。
一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法,其步骤如下:(1)制作碳纤维复合材料正交层板,其铺层次序为[0°2/90°4/0°2],将啁啾光栅传感器埋入碳纤维复合材料正交层板的0°层内,与90°层相邻。(2)恒温条件下,碳纤维复合材料试件在准静态拉伸试验中,利用光纤传感分析仪监测啁啾光栅反射光谱。(3)在坐标系中调整啁啾光栅长度与埋入前的啁啾光栅反射光谱的带宽相一致,此时啁啾光栅反射光谱中,光强下降的点对应的波长位置及波长对应的光栅位置,就是复合材料90°层内横向裂纹产生的位置。本发明方法简单,成本低廉,可以实时检测出碳纤维复合材料中的横向裂纹。
一种适用于复合材料低能量冲击损伤的高效目视检出方法。该方法采用系列冲击试验得到脆‑韧双层漆膜的吸收冲击能量E吸收,再确定复合材料的冲击能量门槛值EBVID,对制备脆‑韧双层漆膜/复合材料进行冲击试验,以脆‑韧双层漆膜裂纹扩展形态图样确定E吸收,结合所加载的冲击能量计算出直接作用于复合材料的剩余冲击能量E剩余;对冲击损伤进行检测,当E剩余≥EBVID,则出现了目视几乎不可见冲击损伤。该方法通过建立E吸收‑漆膜裂纹扩展形态‑E剩余‑EBVID之间的对应关系,将冲击损伤有效放大,通过冲击后漆膜裂纹扩展形态等效评估复合材料制件的内部损伤程度,减少了因损伤导致后续使役过程的危害,并且避免了无损检测工作。
本发明涉及环保复合材料技术领域,公开了一种环保纸土复合材料及其制备方法。本发明提供的环保纸土复合材料的成分包括:废纸浆、碳泥、泥土、水性胶;其中废纸浆、碳泥和泥土的体积份数比为:30?50:5?20:40?60。所述的纸土复合材料组成物料少,环保可降解,机械强度高,耐水性好,不燃烧,可用于各种不同的领域,如制作容器、旅游纪念品、工艺装饰品、建筑材料等。本发明提供的环保纸土复合材料的制备方法,其具体步骤包括:(1)废纸浆的制备;(2)泥土的预处理;(3)原料共混;(4)成型;操作条件温和,制备过程简单,且能耗较低。
本发明涉及一种高强高阻尼复合材料及其制备方法,材料为近等原子比TINI与AL-12%SI复合材料。在自蔓延制备的具有大量开孔结构的多孔TINI合金的基础上,采用挤压铸造工艺,向多孔TINI合金的中渗入AL-12%SI合金,在700±10℃浇入模腔,10秒内开始施加压力,比压为100±10MPA,挤压时间30-40S,完全凝固后,开模取出铸件,制备成TINI/ALSI复合材料。该复合材料拥有类似TINI合金的相变特性,压缩强度较多孔TINI合金明显提高,并且复合材料具有高于多孔TINI和ALSI合金的阻尼性能,特别是相变点温度以上的阻尼性能较高。本发明扩大了多孔TINI合金作为减振材料的使用范围,满足高强度高阻尼的结构功能一体化材料的使用要求。
本发明涉及陶瓷基复合材料,具体涉及一种含导热层的夹芯结构陶瓷基复合材料及制备方法,所述复合材料的夹芯结构为外层结构层采用SiC/SiC复合材料,中间连接层采用C/SiC复合材料,内层导热层采用高导热C/C复合材料。所述方法包括高导热C/C复合材料的制备;SiC/SiC复合材料的制备;采用化学气相渗透方法连接高导热C/C复合材料和SiC/SiC复合材料;该复合材料不但克服了C/C复合材料单独使用时易受氧化损伤的难题,而且高导热C/C复合材料的存在能够提升复合材料体系的使用温度,从而提升构件的服役可靠性。
本发明属于复合材料制备技术领域,具体涉及一种具有分级结构的高强韧碳纳米管增强铝基复合材料的制备方法。该方法制备的碳纳米管增强铝基复合材料因引入了细小的韧性区形成分级结构,从而比均质的复合材料表现出更优异的强韧性。本发明通过高能球磨制备均匀分散的碳纳米管增强铝基复合材料粉末,随后向该复合材料粉末中二次添加微米级铝粉末,通过混合得到最终的碳纳米管增强铝基复合材料粉末,并通过后续的致密化及二次加工得到最终的复合材料。本发明的优点在于:(1)工艺简单、高效,具备规模化生产能力;(2)所制备的分级结构复合材料因具有细小的韧性区,表现出优良的强韧性。
一种制备碳纳米管环氧树脂复合材料的方法,该复合化材料是碳纳米管环氧树脂复合材料,该复合材料使用碳纳米管和环氧树脂经混合固化制成。该复合制备方法解决了以往碳纳米管复合材料中碳纳米管分布不均匀的问题,成功制备了碳纳米管分布均匀的碳纳米管环氧树脂复合材料,而且该复合材料还具有很好的强度和韧性等力学性质,同时导电性也有所提高。该复合材料是碳纳米管环氧树脂复合材料,该复合材料使用碳纳米管和环氧树脂经混合固化制成。
本发明涉及一种复合材料飞机机身段充压试验方法,包括准备试验件,所述试验件包括复合材料机身试验段和金属试验夹具,其中所述复合材料机身试验段进一步包括复合材料蒙皮、复合材料骨架和金属连接件,所述金属试验夹具加持在复合材料机身试验段的两端;在试验件上布置应变采集装置及位移采集装置,用于采集所述复合材料机身试验段的应变及位移;对复合材料机身试验件进行内部填充及密封工序后,进行压力检测。本发明的复合材料飞机机身段充压试验方法测量准确,可为国产大型民用飞机及新支线客机机身段充压试验提供参考,从而提升国产民机结构应用复合材料的技术水平及成熟度。
本发明涉及Ti基非晶复合材料领域,具体为一种内生韧性β-Ti固溶体增强Ti基非晶复合材料的设计及其制备方法。该复合材料成分为(原子百分比)TiaAbBcBed,其中:A为Zr、Nb、Ta、Mo、V、W元素的一种或者几种,B为Cu、Ni、Fe、Co元素中的一种或者几种,a=30~65;b=26~38;c=1~25;d=0~25。通过合金成分的调整获得不同体积分数韧性β-Ti固溶体增强Ti基非晶复合材料,β-Ti固溶体的尺寸为1-200μm,体积分数为0-100。该复合材料表现出优异的综合力学性能,在具有高强度的同时,还具有一定程度的塑性变形行为。压缩屈服强度为1000-1900MPa,压缩断裂强度为1200-2300MPa,压缩应变为2-20%;复合材料的拉伸屈服强度为1000-1900MPa,拉伸断裂强度为1200-2000MPa,拉伸应变为2-20%。对于Ti基非晶复合材料的应用具有重要作用。
金属衬塑耐腐蚀耐摩擦复合材料及制备方法和应用。该金属衬塑耐腐蚀耐摩擦复合材料,包括耐腐蚀耐摩擦复合材料和金属嵌件,所述耐腐蚀耐摩擦复合材料包括聚醚醚酮70?95wt%,碳纤维5?30wt%,微粉2?10wt%,石墨2?5wt%;所述金属嵌件为钢、铸铁或铜等。本发明复合材料以聚醚醚酮树脂为基体,具有优异的耐摩擦性、耐腐蚀性能、耐高温性能,使用寿命长,特别适用于腐蚀性气液体输送泵中使用。本发明衬塑材料耐腐蚀性能、耐摩擦性能和高温性能优异,日常维护维修量小,极大的降低的设备成本。本发明产品采用注塑一次成型加工而成,制造工艺采用传统注塑工艺,生产效率高,可大批量生产。将本发明应用于真空泵的过流部件上效果更加显著。
本申请提供了一种双连续相复合材料振动阻尼特性的计算方法,包括:对双连续相复合材料施加循环载荷,获得迟滞回线;根据所述迟滞回线确定双连续相复合材料的损耗因子;根据所述迟滞回线初始斜率确定双连续相复合材料弹性模量;根据所述双连续相复合材料的振动频率与双连续相复合材料弹性模量之间的关系确定双连续相复合材料的振动频率子。采用此方法不仅能够描述双连续结构的空间分布,而且基于该技术进行有限元分析可以计算双连续相复合材料的振动阻尼特性,填补了双连续相复合材料振动阻尼特性仿真计算的空白。
本发明公开了一种易脱模的复合材料储罐整体成型方法,复合材料成型技术领域。包括如下步骤:按照待成型的复合材料储罐的尺寸制备耐高温高压材料的密封气囊;将密封气囊充满压缩气体后密封,作为复合材料储罐的模具;在密封气囊表面涂脱模剂或铺贴脱模布;采用缠绕成型方法完成复合材料储罐的纤维铺放;将纤维铺放完成的复合材料储罐采用热压罐-真空袋法固化;将密封气囊放气减压,使复合材料储罐与气囊脱离,完成脱模过程,获得整体复合材料储罐。本发明方法工艺简单,不仅能够使复合材料储罐整体性能明显提高,而且脱模方便,可以明显降低成本。
本发明属于材料技术领域,涉及一种碳化硼增强泡沫铝复合材料及其制备方法。该复合材料具体包括铝合金基体和碳化硼增强颗粒以及开孔泡沫结构;其中铝合金粉占复合材料固相质量的77.1~88.9%,B4C粉末占复合材料固相质量的10~20%,Ti粉末占复合材料固相质量的1.1~2.9%;B4C与熔融铝合金发生原位合成反应生成Al3BC和AlB2相,同时聚氨酯分解释放出气体,在复合材料中产生联通的开孔结构。该复合材料综合了铝和B4C陶瓷颗粒的原位增强相及网络互穿开孔结构的优势,具有低密度、吸能减振等特性,同时,加入的碳化硼颗粒及原位增强相使复合材料具有更高的硬度和强度,使其在吸能减振领域发挥更大的应用潜能。
本发明涉及一种钴酞菁功能化Janus复合材料及其制备方法和应用。采用的技术方案是:将四羧基钴酞菁通过静电作用固载到氨基化的Janus复合材料表面,制备得到了一种兼具酞菁催化活性和Janus材料乳化特性的新型复合材料CoTaPc?PS@SiO2,该复合材料在水相及有机相均具有良好的分散性,在有机染料降解、燃油脱硫、苯乙烯环氧化等领域有着潜在的应用前景。
中冶有色为您提供最新的辽宁有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!