一种制备聚四氟乙烯-碳粉纳米复合材料的设 备和方法属于燃料电池和有机—无机纳米复合材料技术领域。 在高压反应器中按1-10g/L放置PTFE,压力8~30MPa,温 度35~100℃,反应时间5-20小时,泄压速度0.5- 1.5MPa/min,喷洒时间5-20秒,产物粒度10-200nm。 CO2气体经干燥过滤并液化加压 输送到高压反应器,与PTFE混合搅拌。当超临界 CO2与PTFE达到溶解平衡,开 微调阀,在喷嘴中“CO2+PTFE+ 碳粉”分散混合后经由喷嘴喷出,最后由收集器实现相分离并 收集“PTFE+碳粉”复合材料颗粒, CO2气体进入回收系统。待系统 降到常压后收集产品,不需进一步烘干。
本发明提供了一种树脂基复合材料的全面残余应力超低温检测法,特别是一种针对各向异性非均质性树脂基复合材料的残余应力的测定方法。该发明采用低温应变花测定全面残余应力,解决了传统技术无法全面表征各向异性非均质性树脂基复合材料式样整体残余应力的问题。为实现对树脂基复合材料特别是各向异性非均质复合材料残余应力的全面测量,本发明采用一种将试样置于低温介质或环境中,或者将试样在低温及常温环境中循环切换,使残余应力充分释放,并采用应变花对残余应力进行测试的方法。
本发明提供制备聚合物与石墨烯复合材料的方法及得到的复合材料和基材树脂,包括如下步骤,将石墨材料与高分子聚合物进行熔融共混,冷却成型,利用拉伸设备对成型复合材料进行拉伸,将形变的复合材料熔融,搅拌,然后冷却、成型;多次重复熔融和拉伸过程,最后得到所述的聚合物/石墨烯复合材料。本发明的剥离石墨烯并用于制备聚合物/石墨烯复合材料的方法简单易操作,制得的复合材料既具有高分子材料的良好加工性能,也表现出石墨烯特有的高导热、高导电和优异的力学性能,既可作为材料直接使用,也可作为基材树脂广泛应用于制备橡胶、塑料和膜材料。
本发明涉及复合材料领域,具体涉及一种纤维素纸/Bi2Te3(碲化铋)热电薄膜复合材料及其制备方法。该复合材料包括纤维素纸基体以及均匀沉积在其表面上的Bi2Te3热电薄膜层;其中,纤维素纸厚度为50~100μm,Bi2Te3热电薄膜层的名义厚度为5~10μm。纤维素纸/热电薄膜复合材料利用非平衡磁控沉积技术制备,该复合材料具有很高的热电能量转换效率,同时表现出良好的柔韧性能,是一种极具应用前景的柔性热电换能材料。沉积热电材料结晶质量高,具有纳米尺度晶粒的致密结构,其厚度、成分均匀可调,热电性能接近于商用块体材料,可应用于柔性能源器件、微型传感器以及控温元件等领域。
一种纤维增强树脂基复合材料层合板声线示踪方法,属于复合材料超声检测技术领域。该方法包括以下步骤:以单铺层为单元对计算区域分区,并利用弹性刚度矩阵及其旋转变换,定量描述FRP复合材料弹性特性空间分布;结合Christoffel方程求解,分别获得不同纤维取向铺层对应的准纵波群速度值关于传播方向角的函数关系式;计算区域网格化,利用Dijkstra最短路径搜索算法,搜寻超声波由源点传播至目标点所经过的节点并计算对应声时。该方法能够实现具有多层结构、弹性各向异性以及不同纤维铺放顺序的FRP复合材料中超声波传播路径和声时的快速、精准计算,能够为研究超声波传播行为、优化检测参数、提高超声成像质量和精度提供支持。
一种高强度、低热膨胀的AlN纳米线和Al复合材料,在纯度大于95%的AlN纳米线的基础上,采用过Al熔点热压的办法制备出高致密度AlN纳米线/Al复合材料,采用H2电弧法制备出平均粒径为80-120nm的Al纳米颗粒;采用Al,AlCl3,Al2O3和NH3为反应物,通过气相CVD法在石英基板上沉积出克量级的AlN纳米纤维,其为纯度高于95%的单晶AlN纳米线,直径分布在10-50nm之间,将体积组分为0~15%的AlN纳米线和Al纳米颗粒混合均匀,干燥后的混合粉热压成块体。AlN纳米线在基体中分散均匀,界面结合良好,AlN纳米线是一种优化金属基电子复合材料力性和热物性的理想增强剂,AlN纳米线和Al复合材料有望发展成为一种高强度、低热膨胀的新型电子封装材料。
本实用新型提供了一种复合材料格栅结构,涉及先进复合材料技术领域,所述复合材料格栅结构包括中间板,所述中间板的一侧固接第一格栅层,另一侧固接第二格栅层;所述第一格栅层内包括多个并排布置的第一肋骨,所述第二格栅层内包括多个并排布置的第二肋骨,所述第一肋骨和所述第二肋骨均为长条状,所述第一肋骨和所述第二肋骨在空间中呈夹角布置。本申请的复合材料格栅结构,解决了现有技术中复合材料格栅结构在用于以整体屈曲为控制条件的结构体中,结构体的整体强度较低的技术问题。本实用新型还提供了一种复合材料格栅板,由复合材料格栅结构经复合材料板成型工艺而得到。本实用新型还提供了一种由上述的复合材料格栅板制成的汽车电池箱。
一种利用纳米氧化物增强氧化铝‑氧化镁‑氧化钙系复合材料的制备方法,属于洁净钢冶金用耐火材料的制备技术领域。具体制备方法为:首先,以电熔刚玉、氧化铝微粉、轻烧氧化镁粉、氧化钙粉为主要原料,纳米氧化物为添加剂,按照实验配比,将各原料湿法球磨;在一定压力下制得素坯;将素坯置于高温炉中烧结,得到氧化铝‑氧化镁‑氧化钙系复合材料。该方法通过调整纳米氧化物的种类与含量,采用固相反应烧结法,一步制备出不同物相组成的复合材料,不仅利于改善复合材料的综合性能,还能降低生产成本,对于提高复合材料部件在洁净钢冶金中的服役性能具有重要意义。
本发明涉及复合材料领域,具体涉及一种玻璃纤维/Bi2Te3热电薄膜复合材料及其制备方法,该复合材料可作为柔性能源器件、微型传感器等方面的应用。该复合材料包括玻璃纤维基体以及均匀沉积在其表面上的Bi2Te3热电薄膜层,形成核?壳结构;其中,玻璃纤维的直径为5~10μm,Bi2Te3热电薄膜层的厚度为1~2μm,膜层结构致密且与玻璃纤维表面结合良好。利用非平衡磁控沉积技术制备的玻璃纤维/Bi2Te3热电薄膜复合热电材料,Bi2Te3沉积层为具有纳米尺度晶粒的致密结构,厚度均匀可调,其热电性能接近于商用块体材料。由于薄膜材料的尺度效应,这种纤维/热电复合材料同时表现出良好的抗弯折性能,可应用于柔性能源器件、微型传感器等领域。
本发明公开了一种具有新型微观组织的Ti基非晶合金复合材料,属于非晶合金复合材料领域和Ti合金领域。这种具有新型微观组织的Ti基非晶合金复合材料与传统Ti合金以及传统非晶合金内生复合材料具有明显不同的特征。其新颖特征在于:(1)在冷却过程中,亚稳β‑Ti晶粒内部产生双凸透镜状非晶相;(2)透镜状非晶相沿<110>β和<001>β方向分布;(3)非晶区域中有些没有坍塌的β‑Ti直条,沿<111>β或<112>β方向分布;(4)这种微观结构只存在于很窄范围的亚稳β合金成分中:(Ti1‑yZry)100‑3.9x(Cu2.3M1.6)x,0.8<x<1.5,0.35<y<0.4,其中M为Fe、Co或Ni。具有这种新型微观组织的Ti基合金具有良好的潜在应用。
本发明涉及义齿用复合材料领域,具体为一种义齿用氧化锆/树脂仿生复合材料及其制备方法。该复合材料由体积百分数为20%~97%的氧化锆和生物相容性树脂组成,微观上具有仿生片层、砖‑墙或交叉叠片结构。本发明通过配制浆料、冷冻铸造和真空冷冻干燥得到具有片层结构的定向多孔坯体,沿片层方向压缩坯体可得到交叉叠片结构,通过去有机质和烧结制备具有片层或交叉叠片结构的氧化锆骨架,通过垂直压缩片层结构骨架与二次烧结可得到具有砖‑墙结构的氧化锆骨架;对骨架进行表面改性与液态树脂单体浸渗,树脂聚合后得到具有仿生结构的义齿用氧化锆/树脂复合材料。本发明制备的复合材料主要用作义齿,可减轻义齿对人体正常牙齿的磨损。
本发明公开了一种用于制备高强高塑铝基复合材料的铝合金和铝基复合材料,属于金属基复合材料和铝合金领域。该铝合金化学成分为(wt.%):Si:0.3~0.7%;Mg:0.7~1.4%;Cu:0.6~1.2%;Al为余量。向铝合金中添加SiC、Al2O3、B4C、TiC、TiB2等陶瓷颗粒以及碳纳米管、石墨烯等纳米碳作为增强相,所制备的复合材料屈服强度明显提高,可达到相同增强相含量的2000系列铝合金基复合材料的水平。同时,铝基复合材料具有良好塑性,可以进行冷变形加工而不开裂。同时,所制备的复合材料自然时效负效应(停放效应)弱,经自然时效后再进行人工时效复合材料强度可达淬火后直接人工时效的强度值。
一种镁基非晶合金及其复合材料,属于材料技术领域,该MG基非晶合金及其复合材料的成分按原子百分比为:MG含量在65~87%之间,ZN含量在2~6%之间,NI含量在2~20%之间,Y含量2~15%,稀土元素含量为0~5%。本发明的镁基非晶合金及其复合材料,具有高达22%的塑性应变和500MPA以上的断裂强度,可作为3C产品、精密零部件生产用材料。
一种优化粒径陶瓷增强金属基复合材料及其制备方法和应用,属于耐磨材料技术领域。该优化粒径陶瓷增强金属基复合材料,包括金属基体材料和增强相陶瓷颗粒;增强相占优化粒径陶瓷增强金属基复合材料的体积百分含量为20%~50%;增强相陶瓷颗粒粒径为0.01μm~0.1μm,0.1μm~1mm,1mm~5mm三种区间中的一种区间粒径,或几种区间的混合粒径;采用液相烧结法制备复合材料,该方法工艺简单、成本低廉,复合材料中同时存在位错强化机制、Orowan强化、加工硬化强化、沉淀强化等多种强化机制,且这些由基体微观结构发生变化而产生的强化机制彼此相互作用,整体复合材料表现出优异的机械性能。
本发明公开了一种具有加工硬化能力的Ti‑Zr‑Cu‑Be四元非晶复合材料及其制备方法,该复合材料为一类含有枝晶相的非晶合金基复合材料,其中枝晶相的化学成分为Ti59~60Zr38~39Cu1~3,体积分数5~95%,非晶基体的化学成分为Ti33~34Zr35~36Cu8~9Be21~24。其中,枝晶相具有变形诱发马氏体相变特性,使得复合材料在拉伸和压缩载荷作用下表现出高强度、大塑性和加工硬化等优异的综合力学性能,如拉伸载荷下具有显著加工硬化行为、塑性变形能力6~15%、强度1100~1900MPa。同时由于马氏体相变,通过循环加载可使复合材料在拉伸载荷下具有超弹性特征,如弹性变形可达2.7~3%。该复合材料化学组成简单、第二相的化学成分相对稳定,有利于复合材料的结构设计和可控制备。
本发明公开了一种金刚石铁基金属复合材料铸件,该复合材料铸件包括金刚石颗粒、和至少一种铁基金属,经浇铸制成;所述金刚石颗粒位于复合材料铸件的至少部分表面部位和/或至少部分靠近表面部位。本发明首次提出使用金属浇铸来实现铁基金属和金刚石的结合制得金刚石铁基金属复合材料铸件,工艺简单,实用性强。本发明还公开了一种金刚石双铁基合金复合材料铸件及其制备方法。
本发明属于炭素材料科学技术领域,提供了一种由沥青质制备金属或金属氧化物/炭复合材料的方法。该方法是以煤炭液化过程的副产物沥青质为碳源,热解聚合物为致孔剂,易热解金属盐为金属前驱体,经过物理共混、炭化还原处理后一步制得金属或金属氧化物/炭复合材料。本发明制得的金属或金属氧化物/炭复合材料具有可控的外观形貌,金属或金属氧化物均以3-50NM较小的粒径均匀地分散在炭载体中。本发明制备工艺路线简单,条件温和,设备常规,成本低,产品的产量可控,适宜大量生产。得到的金属或金属氧化物/炭复合材料可以作为高活性催化剂、吸附剂、磁分离材料、电极材料等。
本发明属于层状复合材料制备领域,涉及复合铸造联合轧制制备泡沫金属夹芯板的方法。
中冶有色为您提供最新的辽宁有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!