本发明属金属碳基复合材料以及环境工程应用技术领域,为解决目前并没有磷酸锆材料表现出对酸性和碱性气体分子兼有容纳吸附功能,提供一种高氮碳基磷酸锆广谱性气体吸附剂及其制备方法和应用。以三聚氰胺锆配合物与壳聚糖甲醛聚合物为前驱体,添加铜、锌、铈、锰金属盐溶液组分,加入磷酸得湿凝胶,湿凝胶填充在模具上或涂覆于空气滤材上,真空冷冻干燥和热解炭化,为高氮碳基磷酸锆广谱性气体吸附剂。对NH3、SO2和H2S等性质差异气体的容纳能力显著高于现有商品碳和多数广谱性吸附剂,制备过程相对温和、原料易得,适用于各种废气处理装置和空气过滤装置加工,使用时不易受温度、湿度、VOCs等环境因素影响,有良好的商业应用前景。
一种金属配合物官能化类水滑石纳米层片的制备方法属于物理化学和材料化学的范畴。利用金属配合物官能化的硅烷直接与经剥层的类水滑石纳米层片上的表面羟基进行反应这一途径,将金属配合物嫁接在类水滑石纳米层片上,同时利用硅烷同表面羟基进行反应和所嫁接金属配合物的电子和立体效应来减弱剥层纳米层片之间的静电相互作用,提高类水滑石纳米层片的稳定性,使之在除去溶剂后不复合仍能保持其纳米层片状态。采用该法所制备的有机-无机复合材料具有比表面积大、金属配合物含量高同时具有类水滑石和金属配合物多功能催化性能的特点。
本发明涉及一种低成本高强度全生物降解农用地膜及其原位反应挤出塑化增容制备工艺,以PBAT和淀粉作为基体材料,以尿素醛作为塑化增容剂。使塑化增容剂尿素醛的反应前体羟甲基脲溶液与淀粉混合,则小分子的羟甲基脲能够方便的附着在淀粉颗粒表面或进入到淀粉颗粒中,显著破坏淀粉的分子链间和分子链内氢键;在螺杆挤出机中挤出时,羟甲基脲在淀粉颗粒表面以及淀粉颗粒中发生原位缩聚反应,生成尿素醛聚合物,而尿素醛大分子链上的酰胺基、氨基等活性基团能够分别与淀粉和PBAT大分子链上的活性官能团发生相互作用,从而塑化并增容PBAT/淀粉复合材料。本发明一方面可使PBAT/淀粉复合材料更适合吹塑制膜,另一方面可使制备的地膜的力学性能大幅提升。
本发明属于双金属复合材料轧制技术领域,具体涉及一种在轧制过程中添加脉冲电流提高双金属复合板成形性能的方法。主要步骤为:覆层金属和基层金属轧前处理,在金属板材上接通脉冲电流,启动轧机进行轧制。本发明所涉及的双金属复合材料的轧制方法,是在轧制过程中对双金属施加脉冲电流,该脉冲电源的正负输出端与电刷相连,形成闭合回路。其有益效果为:提高了双金属板材的塑性,降低轧制力,抑制复合板边部开裂,促进了覆层和基层金属元素扩散,克服能量势垒,提高金属原子扩散效率,提高结合强度,提高了轧制生产效率。
本发明涉及一种基于制备高效储能电极材料的剩余污泥资源化利用方法,属于环境污染治理与固体废物综合利用技术领域。具体按照以下步骤进行操作,采用碱提法从污泥中提纯腐植酸,利用Hummers法制得氧化石墨烯悬浮液,稀释并超声处理,将腐植酸与氧化石墨烯按一定比例配成混合溶液后继续超声一段时间,在还原剂水合肼参与下于90℃反应24h,反应结束后混合液过0.45μm水系膜进行抽滤,抽滤完成后将膜上物收集到培养皿中,80℃烘箱烘干,研钵研磨得到粉末状腐植酸/石墨烯复合材料。把制得的复合材料、导电剂、粘结剂按一定比例配成电极浆料,涂覆在泡沫镍上,干燥后即可作为高效储能的工作电极。本发明操作简单,绿色环保,是一种污泥资源化利用的有效方法。
本发明为一种高韧性Laves相NbFe2基高温结构材料,其成分范围为3.2-27at%的Nb和余量的Fe。通过在Laves相NbFe2中加入过量的Fe,同时控制电弧熔炼条件,在Laves相NbFe2中引入韧性金属相,显著地改善了Laves相NbFe2的室温脆性。本发明制备出的Laves相NbFe2基复合材料为Laves相NbFe2和Fe相组成的两相结构,该合金表现出优异的抗压性能和良好的韧性,其压缩断裂强度可达1.65GPa,屈服强度可达1.12?GPa,压缩应变延伸率可达30%。
本发明提供了一种磁靶向纳米钻石药物及其制备方法和应用。即将羧基化的磁性Fe3O4和纳米钻石(ND)在偶联剂聚赖氨酸(PLL)的作用下,形成磁纳米钻石复合材料(Fe3O4?PLL?ND);然后物理吸附抗癌药物阿霉素(DOX),得到磁靶向纳米钻石药物(Fe3O4?PLL?ND?DOX);在外加磁场作用下,将该磁靶向药物与人宫颈癌(HeLa)细胞作用,表明其能靶向抑制肿瘤增长,以荷瘤小鼠为模型,研究其在体内的磁靶向效应,表明其能靶向定位到肿瘤部位。该磁靶向纳米钻石药物可在制备磁靶向抗肿瘤药物中应用。
一种吸收紫外-可见光的纳米二氧化钛催化剂, 特征在于其分子式:TiO2(1-x) Sx,其中X=0.01-0.06。它是 由廉价的硫酸钛直接焙烧制得。该催化剂具有日光催化甲基丙 烯酸甲酯进行悬浮聚合或本体聚合的优良性能,可用于制备 PMMA或TiO2/PMMA复合材 料,也可用于日光催化降解有机化合物,具有操作简便、成本 低廉、节能等特点。
本实用新型提供的一种复合型可循环利用的铁木方,其内芯由自上而下依次排布有防水阻燃层、强度层及绝热层组成,在保证使用强度及防水阻燃的前提下,提升了隔热及抗热性能;另外防水阻燃层、强度层及绝热层之间通过凸棱及凹槽的配合,再加上防水阻燃层、强度层及绝热层之间粘结剂的粘结作用,进一步保证防水阻燃层、强度层及绝热层之间连接的稳定性;最后复合材料层与防水阻燃层及绝热层接触的部位通过凸棱及凹槽的配合,再加上防水阻燃层、强度层及绝热层两侧的限位槽与复合材料层的限位筋之间的配合,保证防水阻燃层、强度层、绝热层及复合材料层之间的稳定性;上述结合使铁木方的隔热及抗热性能有效提升,同时提升铁木方抵抗水平错动的能力。
本实用新型涉及一种用于电化学和电冶金技术的电极。一种低电压电冶金和电化学电极,包括开槽阳极和阴极,所述阴极包括阴极碳块和导电棒,阴极碳块上开设槽沟或孔,不改变阴极碳块尺寸和开槽沟或孔方式,在导电棒表面局部采用纳米复合材料喷涂一层过渡保护膜层,所述过渡保护膜层厚度在5μm-20μm,过渡保护膜层表干后再涂一层纳米复合材料层,所述纳米复合材料层厚度为20μm-50μm。本实用新型整个电极电阻一致,电压稳定,可以有效改善电解池的物理场,达到增加垂直磁场、减小水平电流及改善电解质的流动作用。
本实用新型属于光纤传感器技术领域,具体涉及一种MOF纳米材料的干涉型微纳光纤传感器。入射单模光纤的一端连接宽带光源,另一端与光敏光纤纤芯的一端无偏心熔接,光敏光纤纤芯的另一端与出射单模光纤的一端无偏心熔接,出射单模光纤的另一端连接光谱仪,UiO‑66 MOF纳米复合材料涂覆在光敏光纤纤芯的表面。UiO‑66 MOF纳米复合材料具有良好的热稳定性和化学稳定性,将其涂覆在光敏光纤上可通过光谱的波长变化来监测pH和湿度响应;使用单模光纤、光敏光纤和纳米复合材料作为传感部分,使传感器结构紧凑简单,体积小,成本低;光敏光纤具有良好的重复性和稳定性等特点,利用光纤纤芯折射率和光栅周期对湿度和pH敏感的特点,从而大大提高了检测精度。
本发明涉及一种氧化石墨烯复合镁基叠层梯度材料的制备方法,其针对功能梯度材料制备过程复杂、易产生不良的界面反应等问题,采用氧化石墨烯、碳化硼作为镁合金的增强体,经超声分散、球磨混粉、单层等离子烧结、叠层整体等离子烧结,制得复合材料,以提高镁合金基体的力学性能;此制备方法工艺先进,数据精确翔实,复合材料的组织致密性好,无缩孔、缩松缺陷,晶粒尺寸明显细化,氧化石墨烯和碳化硼在镁合金基体中分散均匀,界面结合良好,抗拉强度达275Mpa,延伸率达5.8%,硬度达90HV,是先进的镁基叠层复合材料制备方法。
本发明公开了一种N掺杂纳米碳球负载NiCoMnO4纳米颗粒复合材料(NiCoMnO4/NCS)的制备方法,在室温下原位聚合吡咯制得分散均匀的聚吡咯分散液,将Ni(CH3CO2)2·4H2O、Co(CH3CO2)2·4H2O和Mn(CH3CO2)2·4H2O的水溶液分别加入到上述聚吡咯的分散液中,剧烈搅拌,将混合物转移到水热高压釜反应器中持续反应一段时间,离心,洗涤并干燥制得NiCoMnO4/NCS复合材料。该复合材料为可用于氧反应的能量存储/转换装置(如金属‑氧气电池或燃料电池)提供了低成本且高效的电催化剂,本发明制备方法简单、成本较低,展示了良好的应用前景。
本发明涉及金属基复合材料技术领域,具体公开了一种用于选区激光熔化成形的石墨烯表面镀钴增强钴基合金复合粉末的制备方法,该方法通过高效简便的水热还原法将钴金属均匀负载到石墨烯的表面和层间表面以改善与基体的界面结合情况,提高石墨烯的分散性和润湿性,得到的镀钴石墨烯作为增强组分与钴基合金机械球磨,以实现镀钴石墨烯与钴基合金粉末的均匀混合,通过选区激光熔化成形打印出镀钴石墨烯/钴基复合材料的样品,然后对试样表面经打磨抛光,侵蚀处理后清洗干净,用金相显微镜观察侵蚀处的外表面。该方法能够改善石墨烯与基体的界面结合强度,提高石墨烯的分散性和润湿性,获得性能优异的石墨烯增强钴基合金复合材料。
本发明涉及复合材料领域,具体涉及一种轻量化电磁屏蔽篷布及其制备方法;是由位于中间的导电基布、涂覆在导电基布表面的电磁屏蔽复合材料以及覆盖在电磁屏蔽复合材料外侧的保护膜通过高分子粘接剂粘结复合而成的轻量化电磁屏蔽篷布;由于石墨烯框架材料良好的分散性以及对纳米粒子的均匀锚固,使得电磁屏蔽涂料的有效面密度较高,在较薄涂覆层厚度条件下获得优异的电磁屏蔽性能。采用聚氨酯覆膜替代传统厚重的外层布作为保护膜,进一步降低了篷布整体的比重。与现有电磁屏蔽篷布制备技术相比,本发明篷布可在具备优异电磁屏蔽性能的情况下,大幅降低篷布的比重,从而提升其轻便性。
加氢催化剂的制备方法属于物理化学的范畴。其特征在于以四氢希夫碱为配体,在一定条件下使之与交换在分子筛上的金属离子进行配合,从而将所生成的金属四氢希夫碱配合物固载于分子筛孔腔中。通过该方法所制备的金属四氢希夫碱配合物/分子筛复合材料可在温和条件下对苯进行有效催化加氢,同相应的金属希夫碱配合物/分子筛复合材料相比催化反应活性和反应速率可显著提高。此外,作为一种新型复合材料该催化剂有望在光学、吸附分离等方面展示出新的应用前景。
本申请涉及空气净化的技术领域,具体公开了一种植物型杀菌除臭剂及其制备方法。杀菌除臭剂,其包括以下重量份的原料:混合植物提取液12‑30份、混合除臭精油15‑27份、杀菌复合材料8‑15份;其中,杀菌复合材料为采用腊梅提取液和壳聚糖提取液对纳米银进行改性制得;其制备方法为:将混合植物提取液、混合除臭精油、杀菌复合材料混合,搅拌均匀后得到植物型杀菌除臭剂。本申请的植物型杀菌除臭剂,通过原料之间的协同作用,具有提高杀菌除臭效果的优点。
本发明涉及功能性碳基复合材料制备技术领域,具体涉及一种碳基复合吸波剂及其制备方法,通过利用高温自生压力法技术,以碳基材料前驱体为主,同时引入含有铁、钴、镍等元素的前驱体化合物,通过预先处理,在密闭容器内借助高温分解产生压力的方法,即在高温自生压力环境下,使碳和铁磁性元素重新排列组合,形成新型复合物,原位制备形成碳基复合材料。从根本上实现了碳材料通过化学镀进行表面镀和内部填充的复合过程,完成了兼具电损耗和磁损耗复合材料的制备,避免了对预先得到的碳材料的纯化、敏化、镀液配置、化学镀过程、后处理等一系列复杂过程,同时大大提高了该类复合粉体电磁波吸收材料的制备效率以及实现了兼具电损耗和磁损耗特性优化。
本发明涉及装甲防护技术领域,具体涉及一种基于高韧性异质界面层的轻质防弹抗爆多相复合装甲材料;多相复合装甲材料的主体结构包括自迎弹面向内依次设置的碳纤维复合材料止裂层、陶瓷碎弹层、超高分子量聚乙烯纤维复合材料吸能层和碳纤维复合材料支撑层,且任意相邻两层均由高韧性异质界面粘接剂胶膜层粘接在一起;能够解决当前防弹抗暴装甲材料密度大、背凸严重、抗连续射击能力不足的问题。本发明的粘接方法能够有效增强异质界面的粘接强度,提升临界能量释放率,同时提升防护装甲对贯穿性损伤和非贯穿性损伤的防护等级,除可应用于防弹抗爆装甲以外,还可应用于多种抗高速冲击结构,如高速列车车身,各种飞行器壳体、单兵防护用具等。
本发明属于土木工程中的结构工程领域,特别涉及一种抗多灾种高耐久性新型桥墩。本发明由外部不锈钢管和内填的应变强化水泥基复合材料组成。不锈钢管内壁通过焊接栓钉或抗剪连接件来加强不锈钢管与内填的应变强化水泥基复合材料之间的粘结作用,使二者可以协调工作、共同受力形成组合桥墩。本发明的有益效果是合理利用不锈钢管和应变强化水泥基复合材料的材料特性,使该种新型桥墩具有优秀的对地震、火灾、冲击、爆炸等不同灾种的抵抗能力,且由于外部不锈钢管的存在,使其耐久性能优越。该类桥墩特别适用于大跨度的跨海、跨江桥梁或地震多发区的公路、铁路桥梁等。
本发明涉及一种颗粒增强镁基复合板的制备方法。一种颗粒增强镁基复合板的制备方法,将颗粒直径≤10μm,纯度大于等于99.9%的碳化硅进行预处理,形成分散的碳化硅颗粒;对块状镁合金进行预处理,制作挤压模具;熔炼制备镁基复合材料锭;颗粒增强镁基复合板热挤压预处理;在400℃±5℃温度条件下进行热挤压,制备出热挤压过的颗粒增强镁基复合板;在400℃±5℃温度下,进行多道次热轧。本发明减少了直接轧制出现裂纹的倾向,改善了界面结合,使其具有较高的塑韧性,提高镁基复合材料的力学性能,扩大镁基复合材料板材的应用范围。
本发明涉及一种BMT‑BZT复合新型微波介质陶瓷材料及其制备方法,属于微波介质陶瓷技术领域。以五氧化二钽、碳酸钡、氧化镁、氧化锌、碳酸锰、氧化镧、硼酸、聚乙烯醇为原料。制备方法步骤如下:经过对上述原料的制备得到得到粉料A、球磨浆料B、预烧粉体C、球磨浆料D、降烧剂粉体E、混合粉体F、生坯G;得到的生坯G放入烧结炉中进行烧结,保温,然后随炉冷却后制得BMT‑BZT复合新型微波介质陶瓷材料。本发明利用BMT材料和BZT材料两相复合,同时引入碳酸锰对复合材料进行改性,改善复合材料的微波介电性能;针对烧结困难的问题引入了玻璃助烧剂,降低了复合材料的烧成温度,使BMT‑BZT复合新型微波介质陶瓷材料在5G滤波器方面具有极高的价值。
本发明为一种金刚石膜高效散热材料及其制备方法,该散热材料由上而下依次包括上层、中层和下层三部分,上层为厚度20‑500μm的金刚石自支撑膜,中层为含有金刚石粉的焊缝区,下层为金刚石/铜复合材料。该散热材料的制备方法为:以Ag、Cu、Ti、金刚石混合粉体作为活性焊剂,采用真空焊接将金刚石自支撑膜的生长面与金刚石/铜复合材料焊接起来,即获得所述金刚石高效散热材料。本发明散热材料由于焊缝区中含有金刚石粉,不存在热阻层,同时基底采用了金刚石/铜复合材料,散热材料整体散热性能优良,热导率高于600W/(m·K)。此外,本发明方法所需金刚石自支撑膜厚度薄,成本低;操作简单,可实现大规模批量化生产。
本发明涉及一种轧制制备镍‑镁复合板的方法,属于复合材料制备技术领域,解决镁合金板和镍合金板复合的技术问题,解决方案为:对镁合金板和镍合金板进行表面激光清洗,通过控制激光参数,在镁合金板和镍合金板的待复合界面制备微织构,依次按照镍合金板‑镁合金板‑钢带‑镁合金板‑镍合金板的顺序进行对称组坯,然后进行热轧复合和退火处理,最后切退火态轧制复合坯料的封焊位置,去除钢带层,获得两块镍‑镁复合板,所制备的镍/镁层状复合材料界面为波形结合,扩大了钛、镁异种金属冶金结合区,同时波形界面产生机械互锁效益,有利于增加了镁/镍复合材料界面结合强度。
本发明一种光电‑柔性微应力双模态血压传感器及其制备方法,属于柔性应力传感器技术领域;所要解决的技术问题为:提供一种光电柔性微应力双模态血压传感器及其制备方法;解决该技术问题采用的技术方案为:包括芯片底座,所述芯片底座正面的四个角上均设置绿色发光源,所述每个绿色发光源之间形成的坑道上还设置有微应力传感器;所述微应力传感器具体由氧化石墨烯与银纳米粒子以及PDMS复合材料制作,所述微应力传感器包括三层结构:基底层PDMS黏胶与芯片底座粘合,中间层设置有脉搏敏感纳米复合材料,所述脉搏敏感纳米复合材料的上层使用PDMS黏胶封顶,使得微应力传感器与绿色发光源的厚度尺寸相同;本发明应用于测量血压的场所。
本发明公开了一种氮掺杂二维碳基碳化钼纳米材料的制备方法,包括如下步骤:步骤1、将生物质和钼酸铵分别溶于去离子水中,搅拌均匀,形成50~100g/L的钼酸铵和生物质混合溶液,然后经过干燥,得到含钼前驱体;步骤2、将前驱体置于管式炉中,以5℃/min速率升温,在750~850℃的惰性气氛下恒温处理,得到氮掺杂二维碳基碳化钼纳米片复合材料。本发明通过利用枣粉调控氮掺杂量和复合材料的微观结构,合成了氮掺杂二维碳基碳化钼纳米片复合材料,在电化学析氢反应中表现出良好的催化活性,并且合成方法简单,为碳化钼的具体制备和应用提供了很好的技术参考。
本发明涉及一种石墨烯复合铝基叠层梯度材料的制备方法,其针对碳材料作为增强体易在铝合金基体中发生团聚、制备过程复杂、易产生不良的界面反应以及梯度叠层材料在制备难度大、制备过程复杂等问题,采用石墨烯、氮化硅作为铝合金的增强体,经超声分散、球磨混粉、单层等离子烧结、叠层整体等离子烧结,制得复合材料,以提高铝合金基体的力学性能;此制备方法工艺先进,数据精确翔实,复合材料组织致密性好,无缩孔、缩松缺陷,晶粒尺寸明显细化,石墨烯和氮化硅在铝合金基体中分散均匀,界面结合良好,抗拉强度达335Mpa,延伸率达9.8%,硬度达95HV,是先进的铝基叠层复合材料制备方法。
本发明涉及一种无Ni可降解镁基材料的制备方法,属于镁基复合材料技术领域,解决常规石油资源开采效率偏低、成本较高的问题,本发明采用半固态搅拌的制备方法,且选择在半固态直接压铸,解决了复合材料制备过程中Fe易沉降会导致在铸锭中分散不均匀的技术问题,制备出了分散均匀的铸锭,并进一步通过热挤压改善了复合材料铸坯的组织,提高了其力学性能,制得的无Ni可降解镁基材料具有优异的力学性能、优异的降解性能、可控的降解速率和低廉的生产成本,为石油开采中压裂球材料的选择提供了一种低成本可降解且高耐压材料的可选方案。
本发明属于复合材料技术领域,具体涉及一种测量磁场强度的新型器件及制备方法和应用。本发明的目的是提供一种测量磁场强度的新型器件及制备方法和应用。本发明的技术方案为:一种测量磁场强度的新型器件,用传统的化学方法合成四氧化三铁/有机核壳结构复合材料,再用去离子水、无水乙醇、丙酮多次搅拌清洗去除四氧化三铁/有机核壳结构复合材料中残留的离子、有机物,用强磁铁收集材料,放入真空中进行室温干燥5小时,将干燥后的粉末压片、切割,制成器件所需形状,并制备电极,完成器件制备。本发明材料制备的器件的电阻率较大,相比之下连接端口、导线等外部电阻可以忽略,从而提高测量精度。
中冶有色为您提供最新的山西有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!