本发明公开了一种锂离子筛吸附剂的制备方法及其产品与应用,包括以下步骤:将致孔剂、锂盐、辅助金属盐置于溶剂中,搅拌混合后,加入钛酸四丁酯,继续搅拌至溶液混合均一,得到纺丝液;将纺丝液置于静电纺丝机的溶液储存装置中,设定静电纺丝的工艺参数,接着进行电纺,得到纳米纤维;将纳米纤维干燥后,在空气气氛下进行煅烧,煅烧完毕后,得到锂离子筛前驱体;将锂离子筛前驱体在无机酸中进行搅拌反应,反应完毕后,得到锂离子筛吸附剂。本发明制备的多孔纳米纤维状锂离子筛吸附剂比表面积非常大,增大了吸附剂与溶液的接触面积,可以提高其对锂离子的吸附容量。多孔纤维状锂离子筛整体为离子筛结构,对锂离子吸附选择性高。
本发明提供一种全锂废料用于采空区胶结充填的方法,属于固废综合利用及矿山充填技术领域,通过将采掘废石及锂辉石尾砂作为充填骨料,生石灰改性后的水淬锂渣作为胶结剂,以一定比例与清水混合后形成均质充填料浆后,泵送至井下采空区。本发明充分利用了锂金属生产全生命周期所产生的工业固废,用改性锂渣完全取代水泥的同时,充填料浆输送性能较好,且由于掺入了部分采掘废石而使得充填体各龄期强度满足充填要求,从而在综合处理工业固废的同时,为处理井下采空区提供新的思路。
本发明涉及二氟草酸硼酸锂生产技术领域,具体公开了一种二氟草酸硼酸锂的制备方法;其包括如下步骤:1)原料加热混合;2)加入反应促进剂后继续搅拌反应;3)反应后的液体排入过滤箱中进行过滤,再将过滤后的液体液泵入浓缩结晶釜中,通过抽真空泵将其内部抽至负压,进行加热对其滤液进行负压浓缩,然后再向水冷却夹套通入冷却水,从而对浓缩液进行冷却结晶;4)在负压浓缩过程将蒸汽通入冷凝回流器进行冷却回流,然后将浓缩液过滤后,并将滤液通过第三液泵重新泵入搅拌混料罐中;本发明公开的二氟草酸硼酸锂的制备方法生产二氟草酸硼酸锂的效率更高,原料利用率也得到了极大提升,降低了制备二氟草酸硼酸锂的生产成本。
本发明涉及一种锂离子电池隔膜的制备方法,包括:(1)聚偏氟乙烯与石墨烯共混聚合物隔膜的制备,所用原料聚偏氟乙烯、石墨烯纳米片分散液和成孔剂分别为总质量分数的8-25%、0.00001%-0.01%和0.05%-5.0%,剩余质量为二甲基乙酰胺;(2)商用隔膜和聚偏氟乙烯与石墨烯共混聚合物隔膜的复合,用乙醇水溶液润湿后将二者复合。本发明制备的锂离子复合电池隔膜展现出优异的机械性能(MD : 1600kg/cm2, TD : 1200kg/cm2)和热稳定性能(电解液活化后复合隔膜在120℃下加热1h的剩余质量为加热前质量的90%),同时分解电压高达4.5V,较商用隔膜的4.3V有一定的提升,锂离子电导率较商用隔膜提升340%,锂离子迁移数为0.56,所制备锂离子电池表现出良好的循环性能和倍率性能。
本发明公开了一种选择性回收废旧动力锂电池正极材料的方法,属于锂电池回收技术领域。所述方法以废旧动力锂电池正极材料为原料,具体包括:1)对废旧动力锂电池进行预处理,分别得到废旧正极活性物质和负极材料;2)将烘干的正极活性物质与碳负极材料机械混合后,在气氛保护下进行还原焙烧;3)将还原焙烧渣进行水浸,固液分离得到锂浸出液和水浸渣;4)碳化沉淀法回收锂浸出液中的锂;5)将上述水浸渣置于NH3‑SO32‑体系中进行选择性浸出,镍钴进入溶液,锰铝等其它元素留在渣中,实现有价金属的选择性浸出。本发明采用还原焙烧‑水浸‑选择性浸出新工艺,实现了有价金属的选择性回收,适用于处理含镍钴锰的废旧锂电池正极材料。
本实用新型属于锂电池加工领域,尤其一种锂电池夹持转运装置,包括固定座,所述固定座内部活动插接有支撑杆,所述支撑杆上端活动插接有穿过固定座的连接杆,所述固定座内部一侧架设有电机,所述电机的输出轴连接有摆杆,所述摆杆的一端活动连接有齿痕条,所述支撑杆底侧外壁开设有齿痕圈;本实用新型设置的夹持机构,能够满足对锂电池的夹持,且在夹持过程中能够对锂电池起到缓冲的作用,设置的转运机构,能够对夹持够的锂电池转运,且转运机构能够180度的旋转,可上下移动,方便锂电池在转运后的放置,在夹持机构上部设置有多个安装座,可依据锂电池的尺寸旋转合适的位置,以满足不同尺寸的锂电池的夹持,增加该夹持机构使用的广泛性。
本发明公开了一种修复再生的废旧磷酸铁锂正极材料及其修复再生方法,方法包括以下步骤:(1)将废旧磷酸铁锂正极材料与物料A、碳源、金属添加离子混合均匀,得混合物料B;所述物料A包含混合均匀的碳酸锂和氢氧化锂;(2)将混合物料B在惰性或还原性气氛中低温焙烧,冷却,即得到修复再生的废旧磷酸铁锂材料。修复再生的废旧磷酸铁锂正极材料为核壳包覆结构,包覆层为碳层,由碳层包覆金属添加离子掺杂的磷酸铁锂。本发明根据低共融盐原理,在较低温度对废旧磷酸铁锂正极材料补锂再生,修复其中锂空位等缺陷,得到的正极材料具有较好的循环性能,倍率性能高。
本发明公开了一种锂系橡胶合成废水的综合处理方法,包括以下步骤:去除锂系橡胶合成废水中的浮渣;对出水进行过滤,得到过滤后液;采用吸附树脂吸附过滤后液中的有机物和锂,完成对锂系橡胶合成废水的综合处理。本发明方法通过依次对锂系橡胶合成废水进行去浮渣、过滤、吸附有机物、吸附锂等处理,不仅能够有效回收废水中的锂,又能够有效净化废水中的有机污染物,从而实现对锂系橡胶合成废水的综合处理,具有工艺简单、处理成本低(成本最低至1.5元/吨)、锂回收率高、净化效果好、绿色环保等优点,能够实现对锂系橡胶合成废水的资源化再利用和节能减排的目的,有着很高的使用价值和很好的应用前景。
本发明公开了一种基于混合滤波的锂离子电池状态计算方法,包括建立锂电池二阶等效电路模型并得到空间状态方程;采用扩展卡尔曼滤波对二阶等效电路模型进行在线参数辨识得到SOH估计值;采用滑动可变结构滤波算法对锂电池的SOC值进行估计;采用粒子群优化算法修正混合滤波器的参数并得到锂电池的精确的的SOH估计值和SOC估计值。本发明能够在线实时估计电池的状态,而且本发明方法的可靠性高、稳定性好且实施简单方便。
本发明公开了一种管状矿物制备锂硫电池硫正极的制备方法,具体包括以下步骤:将片状高岭土经二甲基亚砜(DMSO)、甲醇和溴化十六烷基三甲铵(CTAB)处理后,利用超声细胞粉碎仪进行剥离和卷曲,获得类埃洛石结构的高岭土纳米卷管,将高岭土纳米卷管与升华硫混合均匀,在密闭空气中通过熔融扩散法获得高岭土纳米卷管载硫复合材料,作为锂硫电池正极能有效抑制穿梭效应;由于管壁只有4‑6nm,可以有效提升锂离子在电池中的扩散速度;其管腔内可容纳更多的活性硫;原料成本低廉,制备工艺简单,易于实现大规模应用,本发明提供的高岭土纳米卷管材料作为锂硫电池硫正极具有优于天然埃洛石和酸改性埃洛石的倍率性能和循环性能。
本发明属于锂硫电池领域,具体涉及四氟硼酸源在锂硫电池中的应用,通过四氟硼酸源配置的锂硫电池电解液,通过功能添加剂在充放电循环过程中的作用,使锂硫电池具有优异的长循环稳定性能以及高比容量等,且其制备方法简单,成本低廉,具有广阔的工业化应用前景。
本发明公开了一种氟改性高电压钴酸锂、其制备方法及电池,制备方法包括:(1)将四氧化三钴前驱体、碳酸锂和添加剂混合均匀,分别烧结、破碎成两种颗粒大小的预烧料;(2)将两种颗粒大小的预烧料混合,再加入氟化物和其它包覆剂混合均匀,二次烧结制备得到所述氟改性高电压钴酸锂。本发明氟掺杂改性后,钴酸锂正极材料仍保持了较高的放电容量。经掺杂、包覆改性后,高电压下的循环、高温存储性能得到显著改善,不可逆相变、产气现象得到有效抑制。
本发明提供了一种磷酸铁锂/碳纳米管复合正极材料的制备方法,相对于传统方法,本发明利用铁基催化剂诱导原位生长分散性良好的碳纳米管,以此为原料制备磷酸铁锂/碳纳米管复合正极材料,该材料结构稳定性和热稳定性好,电导率高,粒径较小,分布均匀,有效改善了磷酸铁锂材料的循环性能和倍率性能,有助于进一步推动磷酸铁锂材料的产业化应用。
本发明公开了一种废旧三元锂离子电池粉末中有价金属回收的方法,先将废旧三元锂离子电池粉末放入通入氧气的井式炉中进行氧化焙烧,得到焙烧产物,焙烧产物中碳的含量减少99%以上,再将焙烧产物溶解于氨‑氯化铵溶液体系,放入反应釜,并加入体积分数为1.6%的水合肼作为还原剂,调节所得浸出液的pH值为8.00,按照O/A比为2加入到萃取剂中,其中Versatic 911的体积分数为20%,磺化煤油的体积分数为80%,控制反应温度为30℃,反应5min后经分离得到萃余液和有机相,通过3级逆流萃取,钴的萃取率为98%以上。本发明使用的设备简单、投资运营成本低、工艺能耗显著降低、有价金属回收率高。
本发明提供一种含锂白色陶瓷玻璃的强化方法和强化组合物,所述方法包括使用由NaNO3组成的熔盐处理所述含锂白色陶瓷玻璃,所述方法还包括在所述熔盐中在300℃以上的温度下加入包含碳酸钠和特殊吸附剂的添加剂,所述特殊吸附剂为选自偏硅酸、硅藻土和氧化铝中的一种或多种,且添加剂用量为所述熔盐、碳酸钠和特殊吸附剂的重量比为100:0.5~4:0.1~1。本发明中通过添加碳酸钠束缚住熔盐中的锂离子,防止锂离子重新回到白色陶瓷玻璃中,且本发明中由特殊吸附剂将硝酸钠熔盐中的杂质包裹并沉积到强化炉底部,使得熔盐的寿命大幅提高。本发明所述方法成功导入量产,白色陶瓷玻璃强化的生产效率得到了极大的提升,且生产成本大幅降低。
本发明公开了一种废旧锂离子电池负极材料的回收方法。其基本步骤如下:1)将废旧锂离子电池负极粉与熔盐混合;2)将混合粉料在不低于熔盐熔点温度下热处理;3)热处理后料浸于水中搅拌均匀后进行固液分离,液相用于提锂及其他有价金属的回收,固相经过烘干后为再生负极材料。本发明实现了废旧锂离子电池负极材料中负极材料的纯化及结构修复、有价金属的回收。具有处理流程短、成本低,所得再生负极材料纯度高且结晶性好,有价金属浸出率高,适合大规模生产。
本发明公开了一种废旧锂离子电池负极所制备的导电剂及其制备方法。所述导电剂的D50粒度范围为5nm‑3.5um,比表面积为300‑1000m2/g,电导率:1×104‑1×105S/m;所述制备方法包括去除废旧负极中水溶性有机粘结剂、废旧负极中碳质材料的分离、碳质材料中杂质元素的深度去除与改性以及还原等步骤。本发明不仅实现了废旧锂离子电池负极材料中碳质组分转变成高附加值的导电剂,导电剂,而且本发明还具有流程短、成本低、适合规模化生产等优点。
本发明提供了一种表面氟化处理的钛酸锂/氧化还原石墨烯复合纳米材料的制备方法,该方法将钛源、锂源和氧化石墨烯在双氧水催化下,经水热反应制得钛酸锂/氧化石墨烯复合物,替代了现有技术中采用高浓度氢氧化钠、盐酸的合成方法,然后和氟化氢铵进一步水热反应进行掺杂氟离子,最后再经还原气氛高温烧结制得钛酸锂/氧化还原石墨烯复合纳米材料。经本发明提供的方法,生产工序较现有技术大大简化,而且在不需使用高浓度酸和碱原料的情况下,取得的产品性能优异,稳定性好。
本发明涉及一种隔膜和包含该隔膜的锂硫电池,所述隔膜包括一层多孔基膜,多孔基膜至少一面上涂覆有均匀混合的碳纳米管与结构式为
本发明公开了一种锂离子电池硅碳复合负极材料及制备方法,采用两次喷雾干燥一次烧结处理制备该材料,其制备方法为:1)将有机碳源溶于适量溶剂中,加入硅源和分散剂分散均匀,再加入石墨化碳分散一定时间,均匀分散的悬浮液一次喷雾干燥后,得到球形核材料;2)将有机碳源溶于适量溶剂中,加入制备的球形核材料后,分散均匀,再把均匀分散的悬浮液二次喷雾干燥,所得粉末转入保护性气氛中烧结,随炉冷却,即得锂离子电池硅碳复合负极材料。本发明简单易行,实用化程度高,制备的硅碳复合材料具有可逆容量大、容量可设计、循环性能和大电流放电能力好、振实密度高等优点。
一种锰酸锂正极材料及其制备方法与应用,该锰酸锂正极材料的化学式为Li1+xMn2-x-yMyO4,为粉末状;化学式中M是选自Ni、Co、Mg、Al、Cr、Ti中的一种或两种以上的元素,0.03≤x≤0.15,0≤y≤0.20。本发明还包括所述锰酸锂正极材料的制备方法与应用。本发明之锰酸锂正极材料可以提升电池能量密度,同时能改善电池倍率和高温循环性能。
本发明专利公开一种聚合物锂离子电池集加热/散热一体化的热管理系统,包括电池模组、聚合锂离子电池、铝塑膜、加热组件、相变板、加热电路板、加热控制系统;所述电池模组由N节所述聚合锂离子电池构成,所述聚合物锂离子电池的外壳采用所述铝塑膜封装,所述的加热组件设置于所述铝塑膜中间一体化集成,所述相变板设置于所述聚合物锂离子电池之间吸收电池产热的热量,所述加热电路板与所述加热组件电路连接,所述加热控制系统设置于所述加热电路板上。本发明专利得益于加热组件与铝塑膜一体化集成,使得聚合物锂离子电池自身具有加热功能,相变板可以实现电池模组的散热功能,从而提升聚合物锂离子电池高低温性能,保障电池模组高效率使用。
本发明涉及废旧含锂铝电解质的资源化处理方法,将待处理的废旧含锂铝电解质粉碎,获得粉末;将所述粉末与第一反应剂混合均匀,进行转相处理,获得混合物;将所述混合物与第二反应剂、水混合,搅拌反应后,过滤,获得滤渣和滤液;将滤液用于沉锂,获得锂盐。本发明实现了废旧含锂铝电解质中锂的高效资源化回收利用,锂浸出率高;本发明工艺流程短、生产效率高、工况友好,不产生二次污染,实现废旧含锂铝电解质的资源化循环利用,社会经济效益显著。
本发明公开了一种防水锂电池的安全测试装置及测试方法;能对锂电池进行振动安全测试;该装置包括一架体A,还包括振动电机安装于架体A内侧底部,还包括一架体B连接于架体A上端面,架体C安装于架体B上端面,气缸A安装于架体C顶部,扫描检测装置设置于气缸A下方,所述气缸A工作,推动扫描检测装置上下滑动,放置盘设置于架体B上端面,所述放置盘穿过架体C滑动。操作时锂电池放置于放置盘上,振动电机工作,是带动锂电池振动,使锂电池承受振动冲击,气缸A推动扫描检测装置下滑,对锂电池进行扫描,将扫描信息上传至控制器,控制器对锂电池表面以及内部进行分析,判断锂电池是否损坏,评定其安全性。
本发明属于锂金属电池负极材料领域,具体公开了一种高柔性3D亲锂复合多孔金属合金集流体,包括高柔性3D多孔金属合金集流体以及原位复合在3D多孔金属合金集流体上的亲锂性磷化物,具有丰富的比表面积、孔隙结构和优异的机械性能,能有效降低局部电流密度,促进电子/锂离子的扩散,抑制体积变化;多孔金属合金集流体上的磷化物层及其表面的纳米线结构,显著降低锂形核过电位,诱导锂均匀地沉积/溶解,所构筑的锂金属负极能够具有优异的电化学性能,库伦效率和循环稳定性得到极大地提升。本发明还公开了所述的高柔性3D亲锂复合多孔金属合金集流体的制备方法及应用。
一种兼具超级电容器与锂离子电池特征的储能器件及其制造方法,本发明采用锂离子电池正极材料与超级电容器电极材料的混合物或复合材料作为正极活性物质,以锂离子电池负极材料与超级电容器电极材料的混合物或复合材料作为负极活性物质。电极活性物质中,锂离子电池电极材料的含量为20%-95%,超级电容器电极材料的含量为5%-80%。电极活性物质与粘结剂、导电剂、添加剂、溶剂等混合配制成浆料,经涂布、干燥、轧膜、分切制作成超级电容电池正极片与负极片。采用多芯卷绕并联及卷芯平行于窄向排列装配技术,将正极片、负极片及隔膜装入电池壳后焊接,干燥脱水,注入电解液,电活化后得到具有高能量密度、高功率密度的超级电容电池。
本发明涉及一种从钛白废副硫酸亚铁生产锂离子电池正极材料磷酸铁锂前驱体的方法。采用钛白粉生产过程中的副产物硫酸亚铁为原料,通过净化除杂、添加一些可提高锂离子电池正极材料磷酸铁锂的有益元素,沉淀后将沉淀物真空下干燥,焙烧得到锂离子电池正极材料磷酸铁锂的前驱体产物三氧化二铁。本发明具有工艺流程简单、制作成本低,得到的产品纯度高的优点,适合于钛白粉副产物硫酸亚铁的综合利用,同时也解决了锂离子电池正极材料磷酸铁锂生产的原料问题。
本申请涉及电池材料领域,具体而言,涉及一种磷酸钛铝锂包覆的石墨复合材料及其制备方法、电池负极。磷酸钛铝锂包覆的石墨复合材料包括:内核,内核的材料包括石墨;壳层,壳层包覆于内核外,壳层的材料包括磷酸钛铝锂和碳;以及钝化层,钝化层包覆于壳层外。在石墨外包覆磷酸钛铝锂和碳,可以提高导电性,磷酸钛铝锂有较高的锂离子导电性,可以提高锂离子的传输效率,与其他材料相比,磷酸钛铝锂具有结构稳定,化学稳定性强,循环性能好等特性。钝化层对覆磷酸钛铝锂具有钝化作用,降低磷酸钛铝锂的副反应发生,提升其存储性能及其循环性能,从而提高磷酸钛铝锂包覆的石墨复合材料的锂离子的传输效率、倍率性能及安全性能。
一种快速检测锂离子电池残余能量的方法,包括以下步骤:S1:取与标定锂离子电池相同型号的全新单体电池进行SOC‑OCV标定测试,获得SOC‑OCV关系表;S2:根据步骤:S1的测试结果得到单次循环的充放电曲线U‑t和I‑t,由Ven(n=1,2,3…),Vbn(n=1,2,3…),Vn(n=1,2,3…)计算欧姆内阻R0n(n=1,2,3…),极化内阻Rpn(n=1,2,3…);S3:对标定锂离子电池进行残余能量检测。本发明的快速检测锂离子电池残余能量的方法,可以快速检测锂离子电池的残余能量,并且能够批量对锂离子电池的残余能量进行检。
一种改性三元正极材料及其制备方法、锂离子电池,该改性三元正极材料的通式为LiNixCoyM1‑x‑yO2@aLiInO2,其中,0.8≤x<1,0<y<1,0<1‑x‑y<1,M为Mn和/或Al元素,a为偏铟酸锂包覆层的含量,以改性三元正极材料的总重量为基准,0
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!