本发明公开了一种原位包覆锂离子电池正极材料的改性方法,包括下述的步骤:将经过干燥的包覆原料加入电解液中,并使包覆原料均匀分散在电解液中;将上述电解液与锂离子电池正极、负极组装成锂离子电池;将组装好的锂离子电池进行充放电循环,在充放电循环过程中包覆原料在正极材料表面原位形成一层包覆层。本发明将包覆原料加入锂离子电池电解液中均匀分散后,不需改变正负极制备工艺和电池组装工艺,不需改变锂离子电池充放电电压,可在原有的生产条件下生产,不用增加包覆工艺流程。只需在配制电解液时将添加剂加入其中,通过充放电循环便可实现原位包覆,并且对锂电池性能改善显著。
本发明公开一种锰酸锂正极材料及其制备方法,该制备方法包括以下步骤:取氟化物做粉碎处理;将粉碎处理后的氟化物、以及碳酸锂、锰源材料和硼酸混合得到混合物,将所述混合物进行一次烧结生成掺氟的锰酸锂;按比例称取所述掺氟的锰酸锂和氢氧化铝,进行二次烧结,生成所述锰酸锂正极材料,所述掺氟的锰酸锂和所述氢氧化铝的摩尔比为1:0.02~0.1。本发明提供的制备方法制备成本低制备方便,制备的碳酸锂正极材料循环性能好、容量高。
一种提高锰酸锂正极材料性能的方法,包括以下步骤:(1)将粒度D50≤35μm的锰酸锂用蒸馏水洗涤除杂,然后脱水干燥,得除杂锰酸锂产品;(2)将除杂锰酸锂产品加入阴离子化合物,混匀后在400~600℃温度下恒温煅烧2~8h,然后继续升温到700~1000℃恒温煅烧7~20h,冷却至室温,研磨至粒度D50≤35μm,得锰酸锂正极材料。本发明方法制得的锰酸锂正极材料首次放电容量比容量可达125mAh/g;在55℃高温条件下,经过50次循环后,放电容量保持率达95%以上;本发明方法采取二次煅烧锰酸锂产品,能提高材料的容量,增强结构的稳定性,改善材料的性能;工艺简单,条件温和,适宜规模化工业化生产。
本发明公开了一种复合包覆剂、高电压钴酸锂及其制备方法,该复合包覆剂包括第一包覆剂和第二包覆剂,第一包覆剂为吸附锂离子的α?磷酸锆,第二包覆剂为吸附稀土离子的铵代α?磷酸锆。在第一包覆剂中,锂离子与α?磷酸锆的摩尔比为1:1~1 : 3,在第二包覆剂中,稀土离子与铵代α?磷酸锆的摩尔比为1:1~1 : 3。上述复合包覆剂,将α?磷酸锆进行吸锂处理,形成负载有大量锂离子的磷酸锆,一方面提高磷酸锆本身的电导率,另一方面形成层状嵌锂化合物,提高锂离子扩散速率。同时,将一部分α?磷酸锆进行负载稀土金属元素处理,为稀土金属的均匀包覆提供载体。上述复合包覆剂可在钴酸锂表面形成均匀包覆,并且导电性好。
本发明属于锂硫电池电解液技术领域,具体公开了一种锂硫电池电解液,其包含导电锂盐、有机溶剂和添加剂A,所述添加剂A的结构式为X为卤素原子(F、Cl、Br、I)中的一种,其在电解液中的质量百分含量为0.1%~5wt%。所述添加剂A可在锂金属负极表面发生反应,反应形成的无机物LiX、Li2SO3Li2SO4和‑N=C=O电聚合形成的有机物改善了SEI膜的组分,提高了锂金属负极的界面稳定性,有效提升了电池的放电比容量和循环稳定性。
本实用新型公开了一种锂电池组的密封结构,包括锂电池本体,所述锂电池本体由锂电池壳体、铜合金极柱、铝合金极柱、密封层和电解液组成,所述锂电池本体的上端设有铜合金极柱和铝合金极柱,所述铜合金极柱和铝合金极柱的下侧设有密封层,所述密封层下侧设有电解液,所述密封层和极柱之间设有金属化陶瓷环,所述密封层包括盖板、减震层、保护板、吸水垫片和绝缘板,所述极柱通过金属化陶瓷环利用钎焊工艺与盖板焊接连接,所述锂电池本体的底部设有绝缘板。该实用新型采用陶瓷作为密封结构的主要材料,提高了密封结构的可靠性和寿命,ABS/PC合金树脂作减震层使其更具密封性、耐热性、抗震性、防漏电和强度阻燃性,环保无污染。
本发明公开了一种锂电池用磷酸铁的制备方法,所述磷酸铁包含由多个一次粒子凝聚的二次粒子,所述一次粒子呈中空多孔球形结构;二次粒子呈中空多孔类球形结构。本发明方案的磷酸铁呈独特的中空多孔类球形结构,以其为前驱体制得的磷酸铁锂具有多孔结构,增大了电解液与正极材料的接触面积,具有良好的浸润性;同时,多孔结构还具有降低离子扩散阻力等优点;中空结构,缩短了锂离子的扩散路径,同时还为锂离子的扩散提供了多种路径,解决了现有技术中的磷酸铁锂材料存在的扩散速度低、极化等问题,因此,利用该磷酸铁锂为前驱体可以制得具有良好性能的磷酸铁锂,尤其具有良好的低温性能。
本发明涉一种醚基锂电池电解液及其制备方法和应用,该电解液包括锂盐、溶剂和稀释剂,其中,锂盐包括LiFSI或LiFC,溶剂包括DME或DH,稀释剂包括HFE,醚基电解质的浓度≥4mol/L。DME或DH为粘度低,电化学稳定性高,不与Li+溶剂化的惰性溶剂,可以很好地解决离子电导率低,影响电池的倍率性能;锂在低温时容易析出,导致低温性能差;粘度较大,难以湿润分离器,降低电池性能;以及经济成本过高,难以大规模商业应用的问题。醚基电解质的浓度≥4mol/L,局部高浓度的电解液与高浓度的电解液同样保持了良好的成层性能,使电池仍然具有抑制锂枝晶生长等优异的性能。本发明还提供了上述电解液的制备方法和含有上述电解液的锂电池。
本发明公开了一种七氟丁酰氯作为添加剂的电解液,包括锂盐、非水有机溶剂和添加剂,所述添加剂为七氟丁酰氯,其浓度为0.5wt%‑2wt%,所述非水有机溶剂为环状碳酸酯和链状碳酸酯的混合物,所述环状碳酸酯与所述链状碳酸酯的体积比为(1‑9):(1:9),所述锂盐浓度为0.8‑1.2M。本发明采用上述一种七氟丁酰氯作为添加剂的电解液及其锂离子电池,向碳酸盐电解液中引入七氟丁酰氯作为电解液添加剂,极大的抑制了锂金属负极中锂枝晶的生长,提高了锂金属电池的电化学稳定性。
本发明公开了一种表面有机修饰层保护的三维多孔锂负极及其制备方法和应用,包括集流体、复合于集流体表面的多孔碳以及复合于多孔碳表面的有机聚合物修饰层,所述多孔碳为具有内部连通孔结构的碳骨架材料,连通孔形成的装填腔室内填充有金属锂;所述的有机聚合物选自卟啉类衍生物在ZnP3‑环己烷中生成的凝胶、二茂铁凝胶、二元胺与石胆酸共混凝胶、羧氨酸基与邻二甲苯生成的凝胶中的一种或者多种,有机聚合物的粘度为15~50mPa·s;分子量为8000‑15000。本发明通过高比表面积多孔碳以及有机聚合物修饰层的双重作用,协同提升金属锂二次电池循环库伦效率,增加其循环寿命。
本申请涉及电池材料领域,具体而言,涉及一种石墨复合材料及其制备方法、锂电池负极。石墨复合材料包括:内核,内核包括石墨;以及外壳,外壳包覆于内核外,外壳包括预锂化固体电解质、导电剂以及碳。固态电解质可以提升材料的锂离子传输速率,导电剂可以有效改善固体电解质自身电子导电率差的问题从而提高石墨复合材料的电子导电率;固态电解质在充放电过程中会导致锂离子损耗,预锂化固态电解质能有效避免该问题,此外,石墨复合材料的外壳具有人工SEI膜的作用。本申请提供的石墨复合材料能有效提高提升材料的首次效率及锂离子导电率。
本发明涉及一种镁锂合金模锻件的热处理方法,该热处理方法包括:将镁锂合金模锻件在第一温度范围下进行固溶处理,得到固溶处理后的镁锂合金模锻件;将固溶处理后的镁锂合金模锻件在第二温度范围下进行时效处理,得到时效处理后的镁锂合金模锻件;将时效处理后的镁锂合金模锻件冷却至室温,得到热处理态镁锂合金模锻件。经过本发明的热处理组合工艺处理后,合金中的MgLi2Al相充分溶解在基体中,既增加了基体中固溶原子的含量,又避免了晶粒尺寸的过度长大,在充分提升固溶强化效果的同时保留了细晶强化效果。
本发明涉及一种熔盐电解制备金属锂的方法,包括先构建阳极室内盛有含锂离子的阳极熔盐电解质并插有阳极,阴极室内盛有含锂离子的阴极熔盐电解质并插有阴极,电解槽内底部盛有液态合金的电化学体系,然后通电电解,向阳极室中加入碳酸锂,即可在阴极熔盐电解质的表面得到金属锂。本发明的有益效果为:以碳酸锂为原料在制备金属锂的过程中,能避免氯气的产生,可放宽杂质含量的要求,降低了生产原料和设备成本。
本发明公开了一种从卤水中提取锂的工艺,包括以下步骤:对原卤进行硫酸酸化,在提取硼酸的同时,使卤水中的硫酸根浓度增大,直到促使硫酸盐结晶;充分中和提硼过后的酸化卤水中的过量酸;让卤水在盐田自然蒸发结晶,结晶出硫酸锂、硫酸镁和氯化镁的混合物;利用硫酸锂的密度比硫酸镁和氯化镁都要大的物理特性,运用选矿学中的重介质重选原理,将锂盐和镁盐分开,以达到分离镁和锂的目的;然后采用烧碱沉镁和纯碱沉锂分别得到氢氧化镁和碳酸锂产品。本发明完全不需要喷雾干燥和煅烧程序,极大地减少了能源的消耗,可以降低70%的生产成本,且工艺流程简单,过程中少有化学反应,不会因流程复杂造成产品质量难以控制,而且环保无污染。
一种酸性中和制备六氟锑酸锂的方法,首先将焦锑酸锂用水浆化后加入氢氟酸中和至要求pH数值,然后向溶液中加入双氧水,使焦锑酸锂中残存的少量三价锑氧化为五价,随后向六氟锑酸锂溶液中通入硫化氢气体净化脱除重金属杂质,净化后液经过浓缩、结晶和干燥得到六氟锑酸锂产品。本发明的实质是利用Sb‑F键长比Sb‑OH键长短且结合力强的原理,在水溶液中用F‑取代焦锑酸锂中的OH‑生成六氟锑酸锂溶液,溶液经过净化、浓缩、结晶和干燥后得到六氟锑酸锂产品。本发明具有工艺过程短、产品质量好和成本低的优点。
一种酸性氧化制备六氟锑酸锂的方法,首先三氧化二锑在氢氟酸水溶液中通入双氧水氧化溶解,使水溶液中锑以六氟锑酸形式存在,其次向六氟锑酸溶液中通入硫化氢气体净化脱除重金属杂质,再次向净化后液中加入锂盐中和至要求pH值后得到六氟锑酸锂溶液,最后六氟锑酸锂溶液经过浓缩结晶和干燥得到六氟锑酸锂产品。本发明的实质是利用Sb(Ⅴ)易与F‑形成SbF6‑配合离子的性质,在氢氟酸水溶液中使三氧化二锑中的Sb(Ⅲ)氧化为Sb(Ⅴ)溶解,六氟锑酸溶液用锂盐中和得到六氟锑酸锂溶液。这些工序紧密关联,共同作用实现了用三氧化二锑氧化制备六氟锑酸锂的目的。本发明具有工艺过程短、产品质量好和成本低的优点。 1
本发明公开了一种废旧锂电池中活性物质酸性浸出液的高效净化工艺。废旧锂电池正极活性材料酸浸液净化工序。其主要特点是采用改进的水解沉淀法和氧化沉淀法除去酸浸液中的杂质离子。包括以下四个步骤:黄钠铁矾法除铁;氧化沉淀法除锰,碳酸氢氨除铝;碳酸钠除铜。本发明所使用的方法成本低,操作弹性大,钴回收率高,能综合回收铝、铜和锰等有价金属,适用于目前广泛使用的钴酸锂电池材料和未来可能使用的大量掺杂的电池材料。使用该方法可使废旧锂离子电池中钴的总回收率约为98%,杂质含量低于2%。
本发明公开了一种尖晶石结构钛酸锂的制备方法,其特征是:将钛盐配制成含钛0.1-3mol/L的溶液,按草酸根与钛的摩尔比1.5∶1~4∶1往溶液中加入含草酸根的配合物,在30~90℃下搅拌反应,然后在0.1~5℃冷冻结晶,静置,将析出的晶体过滤、用去离子水洗涤,然后在30~80℃烘干得钛酸锂前驱体草酸氧钛酸;按锂与钛的摩尔比3.8∶5~4.2∶5将锂源与上述前驱体混合,并在室温下球磨0.5~5小时得无定形钛酸锂,然后将无定形钛酸锂在600~900℃下,于空气气氛中煅烧即得尖晶石结构的钛酸锂。本发明的方法以廉价的无机钛源为原料,工艺流程简单,成本低,产品的电化学性能优异。
本发明公开了一种POSS接枝碳纳米管的新型锂硫电池隔膜的制备方法,以羧基化碳纳米管(CNTs‑COOH)为原材料,将笼型倍半硅氧烷(POSS)接枝到CNTs表面得到CNTs‑POSS材料;然后将制备得到的CNTs‑POSS与聚醚砜(PES)、造孔剂、有机溶剂按一定质量比配制成溶液,将得到的溶液放置油浴锅中恒温加热、搅拌直到CNTs‑POSS均匀的分散在PES基体中形成静电纺丝前驱体溶液;将得到的静电纺丝前驱体溶液在PE隔膜上均匀的纺丝,即得到POSS接枝碳纳米管的复合锂硫电池隔膜。本专利合成具有截硫导锂功能的POSS基类固态电解质,与聚醚砜/聚乙烯(PES/PE)高强耐热隔膜复合,构筑类固态电解质修饰高强复合隔膜,用于解决锂硫电池中多硫离子穿梭导致的容量衰减和非正常工作状况下枝晶刺透导致的安全风险。
本发明公开了一种电池级磷酸铁前驱体、磷酸铁锂及其制备方法与应用,采用共沉淀法合成磷酸铁前驱体,在持续搅拌的同时,加入表面活性剂并通入气体氧化剂,同时通过控制反应温度和反应液的pH值,从而得到铁元素和磷元素均匀分布且表面缺陷少的磷酸铁,采用该磷酸铁制备的磷酸铁锂材料表现出优异的倍率性能。本发明方法获得的磷酸铁,铁磷元素分布均匀,特别适合作为高倍率锂电池正极材料磷酸铁锂的原料使用,且该制备方法反应条件温和,操作简单灵活,成本低廉,同时提高了产率,可大批量生产,应用前景广阔。
本发明提供了一种氟和氮掺杂空心碳气凝胶载硫复合材料作为锂硫电池正极的制备方法,包括如下步骤:先将黏土、碳源及氮源按比例进行氮掺杂碳层的包覆;利用氟源进行低温氟掺杂与去模板得到氟和氮掺杂空心碳气凝胶;将氟和氮掺杂空心碳气凝胶进行载硫,得到氟和氮掺杂空心碳气凝胶载硫复合材料;本发明的氟和氮掺杂空心碳气凝胶的内部管腔连通,降低了锂离子在空心单元间的扩散势垒,缩短了扩散距离,氟和氮掺杂尤其是引入的碳氟离子键显著抑制了穿梭效应,这些特点提升了硫的转化动力学以及利用率;可满足目前锂硫电池的商业化发展要求的高载硫密度和低电解液使用量,且原料来源于廉价的天然黏土矿物,成本低,工艺简便,利于锂硫电池的产业化。
本发明提供了一种预烧‑浸渍联合制备三元正极材料的方法,包括如下步骤:S1、将三元前驱体在250℃~900℃的温度条件下预烧,得到多孔结构的氧化物粉末,预烧保温的时间为0.1h~15h,预烧的气氛为氧气含量为20%~100%的含氧气体;S2、将锂源在溶剂中完全溶解;S3、将S1中的氧化物粉末加入至S2中所获得的溶液中均匀分散,充分浸渍后,将溶剂蒸干得到粉末产物,浸渍的温度为0℃~200℃,浸渍时间为1h~24h;S4、将S3中的粉末产物进行烧制,得到三元正极材料。解决了现有的采用固相混锂‑高温烧结,难以保证锂源与前驱体的均匀混合,并且熔融锂源会覆盖在前驱体二次颗粒表面,在传质上阻碍进一步反应。
本发明公开一种改性镍钴锰酸锂NCM111三元正极材料及其制备方法与电池,其中所述改性NCM111三元正极材料的化学式为:Li[Ni0.3Co0.3Mn0.3]xRzMyO2,其中:x+y+z=1;x:y:z=0.992:(0.001~0.003):(0.005~0.007);R元素包括金属元素Mg,Ti,Zr,Al中至少两种;M元素为Zn,Ti,Zr,Al中至少一种。本发明通过掺杂与包覆共同改性的方式来提高材料的离子电导率,稳定材料的结构进而提高材料的性能。利用材料之间的分子间作用力,选用合适的多种掺杂材料同时选用一种对中间体NCM111材料结构影响不大,但能明显提高材料导电性的包覆材料,同时通过调整各材料之间的配比来改善正极材料的晶型粒径,正极材料的导电性,进而提高锂离子电池的功率性能及其高温存储性能。
本发明公开了基于电化学阻抗模型的锂电池SOC估算方法及其系统,针对锂离子电池SOC估算问题,通过分数阶理论构建了基于电化学阻抗的等效电路模型,基于电化学阻抗谱的分析,引入CPE,替代传统时域电路模型中的纯电容元件,考虑电动汽车实际运行过程中电流及温度变化范围大,将模型中的极化电阻使用Butler–Volmer方程进行替代,针对建立的电池电化学阻抗电路模型,设计用于锂离子电池SOC估算分数阶观测器,最后利用电池特性测试数据对模型参数进行辨识,对电池的SOC进行精确估算。相比起现有技术而言,本发明中的基于电化学阻抗模型的锂电池SOC估算方法及其系统由于考虑了温度因素,测得的电池SOC值更加精确。
一种制备锰系锂离子筛吸附剂的方法,涉及一种用于从盐湖卤水、海水等液态锂资源中吸附锂的无机吸附剂的制备方法。以Mn2O3和LiOH或Li2CO3为原料,采用两段固相反应,制备出立方晶型的离子筛前躯体Li1.6Mn1.6O4,该前躯体也可以用作锂离子电池的正极材料。用酸处理前躯体得锂离子筛吸附剂MnO2·0.5H2O(或表示为H1.6Mn1.6O4),该离子筛是对锂具有很高选择性的锂吸附剂。本发明的优点是原材料简单易得,工艺过程简单,离子筛的吸附容量高,成本较低,产品纯度高,易实现工业化生产。
本发明属于固态电池技术领域,具体公开了一种固态电解质膜及锂金属固态电池。在制备聚合物复合固态电解质时加入弱酸或其他能与锂金属起温和反应的添加剂,使固态电解质与锂金属在界面处通过化学反应紧密结合,消除空间电荷层,降低界面阻抗。界面处形成的镀膜层可以隔绝活性填料与锂金属的接触,抑制两者的副反应。在电池循环过程中,添加剂可与刺入电解质内部的锂枝晶反应,消耗锂枝晶,抑制锂枝晶的生长。同时,由于在近负极侧该物质的浓度降低,在固态电解质内部产生浓度梯度,引起该物质向负极侧扩散,维持其抑制锂枝晶的能力。锂枝晶与添加剂的反应产物也可进一步促进离子传输。
本发明提供了一种锑化合物表面包覆的锂过渡金属氧化物层状正极材料及其制备方法。本发明提供的一种锑化合物表面包覆的锂过渡金属氧化物层状正极材料包括核芯和壳层;核芯材料所述的锂过渡金属氧化物层状正极材料包括钴酸锂、镍酸锂、镍钴锰酸锂和富锂锰等层状正极材料,其化学通式为:xLi2MnO3·(1‑x)LiMO2(0≤x≤1),其中M为Ni、Co、Mn、Fe中至少一种。壳层材料为Sb2O3、Sb2O5、aLi2O·(1‑a)Sb2O3(0≤a<1)、bLi2O·(1‑b)Sb2O5 (0≤b<1)中至少一种,其中壳层锑化合物的质量为锂过渡金属氧化物层状正极材料质量的0.5%~5%,锑化合物包覆层厚度0.5~20 nm。与现有技术相比,本发明选用具备电化学活性的锑化合物作为包覆层,能有效减少锂过渡金属氧化物层状正极材料界面与电解液的接触,抑制界面副反应的发生,从而抑制相转变,电化学性能结果表明有效提升倍率性能,抑制电压衰减,这归因于锑化合物包覆能有效降低电化学阻抗。
本发明属于锂离子电池材料回收技术领域,公开了一种磷酸铁锂废料的综合回收方法。将磷酸铁锂废料粉碎过筛后与氢氧化钠混合均匀,然后在空气或氧气气氛下,升温至350~1000℃烧结反应;将烧结后的物料加水制浆,过滤得到磷酸钠溶液和含锂渣,磷酸钠溶液用磷酸调节pH值后过滤,滤液蒸发结晶得到磷酸钠产品,将含锂渣加水混合制浆,用稀酸调节pH值,过滤得到粗制锂溶液和氧化铁渣;将粗制锂溶液用碱性物料调节pH至10.0~11.0,过滤得到精制锂溶液。本发明的方法工艺简单、成本低廉,磷回收得到的磷酸钠质量百分数达到99%以上,达到工业级标准,锂的回收率达到98.25%以上,具有良好的应用前景。
本发明属于废旧锂离子电池有价材料回收再利用领域;具体公开了一种从废旧锂离子电池中预先提锂的方法,从废旧锂离子电池中分离得到正极活性材料,或者分离得到包含正极活性材料和负极活性材料的电极活性材料;将分离得到的正极活性材料或电极活性材料复合在集流体表面,制得待处理正极;将待处理正极为正极、不锈钢或钛板为负极,在电解液中通电极化,控制极化电压在0.8‑1.4V;极化完成后,收集富集有锂的极化后的电解液。本发明方法,不同与先回收镍钴锰最后回收锂的传统提取方法,创新性地采用电化学方法预先提取活性粉末中的金属锂,可有效避免传统提取方法沉淀镍钴锰时造成的锂夹带沉淀,高效实现废旧锂离子电池中有价金属的回收再利用。
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!