本发明公开了基于长短时记忆LSTM和粒子滤波PF的锂离子电池剩余使用寿命预测方法,属于新能源电动汽车锂离子电池剩余使用寿命预测领域,具体步骤如下:分析从锂离子电池电压、电流和温度中提取锂离子电池性能退化特征参数,利用改进主成分分析法融合特征参数作为锂离子电池健康指数,充分表征锂离子电池性能退化特征且不含冗余信息;训练基于长短时记忆神经网络的锂离子电池容量预测模型预测锂离子电池容量,以LSTM预测模型的容量预测值作为粒子滤波预测模型的观测值,在粒子滤波算法的每一步迭代过程中调整更新容量预测值,比较容量预测值和容量失效阈值从而预测锂离子电池剩余使用寿命。本发明能有效监控和预测锂离子电池性能退化过程。
声明:
“基于长短时记忆LSTM和粒子滤波PF的锂离子电池剩余使用寿命预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)