本发明公开了一种基于最大熵离线式的能源存储与负载的优化方法,包括创建行动者神经网络和评论家神经网络,并初始化行动者网络参数和评论家网络参数;通过行动者神经网络对能源系统的系统状态信息进行训练,得到能源调度方法;通过评论家神经网络对能源系统的运行反馈信息和能源调度方法进行训练,得到评估信息;在熵约束参数的约束下,根据评估信息对行动者网络参数、评论家网络参数及存储‑能效约束参数进行优化;基于优化后的行动者网络参数和评论家网络参数重复训练,直至得到的能源调度方法满足优化目标。本发明基于软行动者‑评论家方法能够自动与环境进行交互,动态优化更新能源调度方法,满足能源的存储与不同负荷的需求之间的负载均衡。
声明:
“基于最大熵离线式的能源存储与负载的优化方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)