本发明提供一种基于工况数据的
新能源汽车电控系统故障预测方法,在收集新能源汽车电控系统故障数据及故障样本的基础上,如控制器输出偏差、控制器响应数据、仪表显示偏差等字段的数据,利用这些数据作为新能源汽车故障预测数据库的支撑,作为学习样本,结合神经网络预测的方法,建立基于神经网络的电控系统故障预测模型,通过矩阵运算和softmax层的转化得到最终的概率预测矩阵,选取概率最大的那一项故障作为最终的预测结果。模型的训练方法为随机梯度下降法,通过不断地迭代直到误差小于阈值或者迭代次数大于设定值,最终形成了可用于实际电控系统故障预测的神经网络模型,对故障的预测准确率达到96%以上。
声明:
“基于工况数据的新能源汽车电控系统故障预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)