本发明公开了基于深度学习和超像素分割的复材超声图像缺陷检测方法,包括以下步骤:步骤1、对复材超声检测图像进行扩增形成训练样本集,基于训练样本集通过YOLOv3神经网络对复材缺陷进行特征检出与提取,得到缺陷目标检测包围框;步骤2、采用超像素分割方法对复材超声检测图像进行像素级分割,得到若干超像素分割子区域;步骤3、将包含缺陷的超像素分割子区域位于缺陷目标检测包围框外部的部分舍弃,将包含缺陷的超像素分割子区域位于缺陷目标检测包围框内部的部分保留并合并作为最终缺陷区域;步骤4、拟合最终缺陷区域的最小外接矩形作为最终缺陷检测结果;本发明具有同时保证
复合材料超声图像缺陷检测识别的高效性与精确性的有益效果。
声明:
“基于深度学习和超像素分割的复材超声图像缺陷检测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)