一种溴化锂溶液吸收式空调的制冷工艺,涉及一种空调的制冷工艺,包括有制冷设备,冷媒水换热器、蒸发器、盘管冷凝器、单向阀、发生器、加热器,其特征在于,蒸发器2和第一发生器8及第二发生器11之间用管道连接,管道上连接有蒸发器单向阀4、蒸发器与发生器相连的单向阀5、第二发生器单向阀6、第一发生器单向阀7和盘管冷凝器3,蒸发器2的液体中设有冷媒水换热器1;发生器的液体中设有发生器加热器,冷媒水换热器1与空调空间相连。本发明制冷循环工艺简单,无转动设备,且体积小,涉及设备少、可利用发动机余热制冷。
本发明涉及电池领域,提供电池帽盖、锂电池及锂电池的组装方法。电池帽盖包括由上至下依次设置的顶盖板、基板、防爆片、绝缘垫片、孔板、外圈以及封孔珠;所述顶盖板、基板、防爆片、绝缘垫片、孔板以及外圈组装为一体,所述顶盖板的板面上开设有第一通孔,所述基板上开设有与所述第一通孔连通的排气孔,所述外圈上开设有与所述排气孔连通的第二通孔,所述第一通孔、所述排气孔以及所述第二通孔同心,所述封孔珠用于在电池排气后由所述第一通孔压装进所述排气孔以封堵所述排气孔。本发明可以在电池封口后,进行排气,且工序简单,设备投入小。
本发明公开了属于纳米材料制备技术范围的一种纳米锂离子导体铝酸锂(LiAlO2)粉体的制备方法。该方法首先通过阳极氧化的方法制备AAO模板,再采用AAO模板,水热制备LiAlO2纳米粉。即以AAO模板为铝源,LiNO3和Li2CO3为锂源通过水热反应制备纳米LiAlO2。本发明与其他制备LiAlO2的方法相比,具有工艺简单易行、成本低、过程易控制、产率高,产物分散性良好,粒度分布窄的优点,为制备纳米LiAlO2提供了新方法。
本发明公开了一种防锂枝晶的锂金属电池负极侧隔层材料的制备方法。以聚丙烯腈和碳纳米管为原料,通过制备膜液、溶剂相转化、预氧化、碳化,得到防锂枝晶的CNT@C复合膜材料(CNT@C隔层材料,作为锂金属电池负极侧隔层材料),将具有海绵孔结构与高导电性的CNT@C隔层材料覆盖于锂片之上,对锂金属电池负极进行保护,防止锂枝晶及电池短路。在8mA h cm‑2和8mA cm‑2的高电镀/剥离容量和电流密度下,Li/CNT@C电极运行500h后过电势约为0.15V。当以LiFePO4为正极组装全电池时,Li/CNT@C电池循环600次的容量保持率为82.5%,表明CNT@C隔层材料对减缓锂枝晶生长、延长电池循环寿命的效果较好。
多孔碳材料在锂-亚硫酰氯电池正极中的应用,碳材料颗粒粒径为1-30μm,颗粒本身呈由碳片层构成的类蜂窝状多孔结构,孔容为0.5~5cm3/g,其内部包括二种孔,一种是由碳片层作为孔壁而构成的交错贯通孔,另一种孔是均匀分布于孔壁内的孔;交错贯通孔主要为二类孔径范围分别为5~90nm和100~500nm的孔,二者占贯通孔孔体积的80%以上,二者孔体积比例为1∶10~10∶1,碳片层厚度为2-50nm;孔壁内主要为孔径范围为1~10nm的孔,占孔壁内孔体积的90%以上。将该碳材料用于锂-亚硫酰氯电池正极中,可最大限度地提高碳材料在放电过程中的空间利用率,有效提高电池的能量密度及功率密度。
本发明公开了一种二氯化镁(2,2,6,6‑四甲基哌啶)锂盐的制备方法,属于有机合成技术领域。在惰性气体保护下,将锂片及2,2,6,6‑四甲基哌啶悬浮于有机溶剂中,升温后加入烯烃反应,接着加入无水氯化镁反应,处理后得到2,2,6,6‑四甲基哌啶镁锂混合盐。该制备方法通过使用苯乙烯或其他烯烃作为氢接受体,避免生成低沸点危险物,实现了该重要试剂的安全,高效一锅法合成,且得到的产品使用性能良好。
一种锂氧电池阴极亲锂‑钴锰复合金属基有机框架催化剂的制备方法及应用,将乙酸钴、乙酸锰和对苯二甲酸加入到N,N‑二甲基甲酰胺中,转移到水热釜中,水热反应;用乙醇洗涤后,进行离心处理,弃去上清液,保留离心产物;将离心产物,干燥,研磨过筛后,得到钴锰复合金属基有机框架催化材料。优点是:制备方法简单,容易操作,具有较大的比表面积、较多的活性位点以及优异的电子传导性;应用于亲锂的ZnO/CNT作为阴极的整平层能够吸引锂离子,促进催化反应更好更快的进行,从而明显提高了锂氧电池循环寿命。
本发明属于轻金属低温提取领域,特别涉及了一种以氧化锂为原料近室温电沉积制备Al‑Li母合金的方法。以氧化锂为原料近室温电沉积制备Al‑Li母合金的方法,所述方法为电解法,所述电解法所用电解质,按质量百分比由96~99%的室温熔融盐和1%~4%的氧化锂组成,其中,所述熔融盐由阳离子部和阴离子部组成,所述阳离子部具有下述通式:[AlCl2·nBase]+,所述阴离子部为AlCl4‑。本发明的方法工艺可以在低温下电沉积铝锂合金,得到的产品纯度高,对设备要求较低,可规模化生产以提高效率和产量,为低成本的铝锂母合金绿色制备提供技术储备和理论支持。
本申请提供一种牙科用硅酸锂玻璃陶瓷,其包括以下质量百分含量的原始组分:SiO2:60‑80、Li2O:10‑20、K2O:0.1‑6、Al2O3:0.1‑6、成核剂:0.5‑6、ZnO:0.5‑5、ZrO2:0‑5、Tb4O7:0‑2、着色剂和荧光剂:0‑5、其它成分:0.1‑5;其中,SiO2的平均粒径D50为0.5μm‑5μm;成核剂包括P2O5、TiO2、Nb2O5中的至少一种;着色剂和荧光剂包括CeO2、Pr2O3、V2O5、Er2O3、MnO、NiO、Co2O3、Nd2O5、Tm2O3、Sm2O3、Eu2O3、Dy2O3、Yb2O3中的至少一种;其它成分选自Na2O、Rb2O、B2O3、La2O3、TiO2、Nb2O5、WO3、MoO3中的至少一种。本申请提供的硅酸锂玻璃陶瓷具有高的透光率。
本发明涉及电池领域,提供锂电池及锂电池的制备方法。锂电池包括正极集流盘,包括盘体、第一凸台及第一凹槽;卷芯,由正极片、负极片与隔膜卷绕而成,使得负极片包裹正极片、隔膜包裹负极片,第一凹槽背面压入卷芯的正极露箔内,并对第一凹槽与正极贴合处焊接;壳体,底部构造有间隔设置的多个朝向壳体的开口处凹陷的第二凹槽,卷芯装入壳体,使得卷芯的负极与第二凹槽贴合,并对卷芯的负极与第二凹槽的贴合处进行焊接;防爆片包括朝向正极集流盘一侧外凸的平台以及环绕平台四周的压片,压片与平台连接处设有刻痕,平台的底面与第一凸台接触并焊接。本发明可进行超大倍率的充放电,满足所需大电流放电要求。
本发明公开了一种氧化微晶石墨基纳米Si/SiOx锂离子电池负极材料的制备方法,以天然无烟煤基微晶石墨为原料,通过鄂式破碎、反击式锤破、卧式搅拌磨‑干法旋风分级,制成超细粉体,然后用一种或两种抑制剂、自制乳化煤油捕收剂和2#油起泡剂,进行一次粗选和五次精选,再利用NH4F及环保材料过量HCl、HNO3的一种或两种酸混合,制备高纯微晶石墨,接着用Hummers法将高纯微晶石墨制备成氧化微晶石墨;利用溶胶凝胶法‑惰性气氛焙烧法制备Si/SiOx纳米材料,将其与氧化微晶石墨在惰性气氛高能球磨机中混合,制备微晶石墨基纳米Si/SiOx锂离子电池负极材料。本发明不但提高了亚稳态SiOx结构稳定性及反应可控性,而且显著提高了无烟煤基微晶石墨作为锂离子电池的可逆容量及循环稳定性。
本发明提供一种锂离子电池负极材料Li4Ti5O12/TiO2/RGO及其制备方法,其采用水热合成以及进一步煅烧过程,使用TBT、RGO和CH3COOLi·2H2O为原料,以乙醇为溶剂,水热反应制成前驱体;随后,将前驱体于空气氛围中高温煅烧,从而得到目标产物。通过该方法制成的锂离子电池负极材料主体为RGO薄层片上负载着LTO/TiO2纳米颗粒,在保留主体LTO优良性能的基础上,利用了TiO2比容量高、稳定性能良好的特点;导电性能良好的RGO加入,能有效减少纳米粒子之间团聚的现象,增大材料的比表面积,为锂离子提供更多的扩散渠道,进而增强整体材料的电子导电性,应用前景巨大。
本发明属于锂离子电池及超级电容器领域。具体涉及一类用机械化学法制备的具有高比容量、电化学脱嵌锂可逆性及循环性能稳定的氮化锂/陶瓷基复合负极材料及其制备方法。该复合材料以氮化锂为活性增强体,含有硅元素的陶瓷粉为基体的一类复合材料,该复合材料中,活性增强体与基体之间以化学键合为主要的界面结合方式,且具有良好的结构稳定性,增强体与基体的摩尔比在1∶1~9∶1之间。本发明具有更加良好的电化学循环性能和倍率性能;及更宽的电压窗口,并且其离子导电性及循环性良好,在新型超级电容器电极材料方面具有潜在的应用价值。制备方法简单,易于控制,所需的原材料均不含有重金属元素,具有环保和价格低廉的优势。
本发明公开了一种锂离子超级电容器富锂复合正极材料制备方法。步骤:将一定配比可溶性镍锰钴盐溶于去离子水得混合溶液;将高比表面的炭材料分散于此混合溶液;以NaOH溶液和氨水分别作沉淀剂和络合剂;共沉淀法制备镍锰钴盐混合悬浊液,并使其负载于炭表面及孔洞内;过滤、水洗,得到活性炭载前驱体;将此前驱体与锂源混合,在管式炉中特定气氛下固相烧结,得目标材料。本发明优点,前驱体负载于炭表面及孔洞内,由于多孔炭粒径尺寸限制,避免了烧结过程中富锂材料的团聚及晶体过分生长,有利于材料倍率性能提高;制备过程中添加超计量比锂源,锂源部分会沉积于多孔炭表面,弥补了首次充电过程中形成所谓SEI膜和竞争吸附所带来的锂源匮乏。
镍钴锰酸锂三元锂离子电池正极片制备方法,包括以下步骤:1)按质量配比,称取镍钴锰酸锂活性粉体,乙炔黑和PVDF,置于容器中,并向容器中添加N‑甲基吡咯烷酮,调节粘度后,搅拌8~10h至混合均匀,获得正极浆料;2)将正极浆料涂敷于铝箔上,形成涂敷好的样品;3)将所述的涂敷好的样品进行真空冷冻干燥处理,形成干燥后的样品;其中:所述的真空冷冻干燥温度为‑50~‑30℃,真空冷冻干燥时间为12~16h;4)将干燥后的样品经压片与切片操作,获得镍钴锰酸锂三元锂离子电池正极片。该方法工艺流程简单,成本低,所制备的电池正极片性能良好,经测试,具有较高的首次放电比容量与放电效率。
本发明属于能源领域,公开了一种锂离子电池负极材料的制造方法及其制备的锂离子电池负极材料,包括如下过程:(1)将平均粒径在1~7μm的石墨微粉、生焦微粉或者熟焦微粉中的一种或一种以上的混合物,与粘结材料按微粉∶粘结材料为1∶0.01~0.5的重量比混合均匀;(2)将(1)中的混合物隔绝空气在500~1500℃下进行热处理,得到固态体型材料;(3)将得到的固态体型材料进行粉碎和分级,得到符合锂离子电池负极材料粒径要求的碳质中间体颗粒;(4)将(3)所得碳质中间体颗粒在2200~3200℃下进行石墨化处理。本发明的方法制备锂离子电池负极材料,生产成本低、工艺简单、加工性能良好,以其做成的电池循环稳定,倍率性能优秀,且提高了石墨微粉、生焦微粉或者熟焦微粉的利用价值。
本实用新型涉及锂电池技术领域,提供一种锂电池垫片及锂电池,上述的锂电池垫片包括垫片本体、连接管及环形件;垫片本体上设有第一通孔、第二通孔及第三通孔,第一通孔与锂电池的极耳相适配,以使极耳经由第一通孔引出,第二通孔设于垫片本体的轴线处;连接管沿第二通孔的轴线方向连接于垫片本体,连接管上还设有第四通孔;环形件连接于垫片本体,且与连接管同侧、同轴设置。本实用新型提供的锂电池垫片,相较于现有技术,其结构具有更好的稳定性、且电解液渗透效果更优,有效地提高了锂电池的使用性能和延长了锂电池的使用寿命。
本发明提供一种钒工业废水生产掺钒磷酸铁锂的方法及掺钒磷酸铁锂,所述钒工业废水生产掺钒磷酸铁锂的方法包括以下步骤:向钒工业废水中加入还原剂,将钒还原到四价或三价;再加入铁源,磷源搅拌形成溶液;在惰性气氛保护下向溶液中加入碱性物质,过滤、洗涤脱钠,获得掺钒磷酸亚铁铵;将掺钒磷酸亚铁铵一次煅烧成掺钒磷酸铁;将掺钒磷酸铁与碳源、锂源混合球磨后,二次煅烧获得包覆碳的钒磷酸铁锂;向滤液中加入氢氧化钠,并蒸馏脱铵,获得硫酸钠液体,将硫酸钠溶液蒸发结晶获得硫酸钠晶体。本发明将含钒工业废水的脱铵、提钒与磷酸铁锂的掺钒结合在一起,解决了废水处理工艺复杂、成本高的问题,同时获得了均匀的钒掺杂LFP前驱体。
一种锂·空气或锂氧电池正极用多孔碳材料,碳材料颗粒粒径为1-30um,颗粒本身呈由碳片层构成的类蜂窝状多孔结构,孔容为0.5~5cm3/g,其内部包括二种孔,一种是由碳片层作为孔壁而构成的交错贯通孔,另一种孔是均匀分布于孔壁内的孔;交错贯通孔主要为二类孔径范围分别为5~90nm和100~500nm的孔,二者占贯通孔孔体积的80%以上,二者孔体积比例为1:10~10:1,碳片层厚度为2-50nm;孔壁内的孔主要为孔径范围为1~10nm的孔,占孔壁内孔体积的90%以上。该碳材料可有效提高电池的放电比容量、电压平台及倍率放电能力,进而提高锂·空气电池的能量密度及功率密度。
一种采用溶胶-凝胶制备锂离子电池材料磷酸锰锂/碳的方法,属于能源新材料技术领域。该制备方法将锂源化合物、锰源化合物、磷源化合物和络合剂化合物以摩尔比为1.025∶1∶1∶0-2,溶于溶剂或分散到溶剂中得到混合材料,采用浓硝酸或者浓氨水调节溶液pH值为0.5-3.7,制得溶胶液。将溶胶液在水浴锅中蒸干,得干凝胶,再经干燥和焙烧处理,得到碳包覆的粒度为50~150nm的磷酸锰锂。通过该方法合成的材料具有纳米级尺寸、且分散均匀,磷酸锰锂基体外包覆碳材料,有效阻止了颗粒的团聚,同时提高了颗粒的电子导电性。电化学测试表明:电极在4V左右具有明显的放电平台,放电容量高,循环稳定性能好。
本实用新型提供一种用于锂硫电池的锂片裁切治具,包括C型支架,所述C型支架上端面固定设置有气缸,所述气缸的缸体固定在C型支架上端面上,所述气缸的活塞杆自上而下穿过C型支架上端面,所述活塞杆下端部通过刚性垫片与尼龙板中心固定;所述C型支架下端面上与尼龙板相对位置设置有激光刀模,所述尼龙板与激光刀模形状、尺寸相匹配;所述C型支架下端面上设置有激光刀模限位装置;所述C型支架下端面面积大于C型支架上端面,或所述C型支架下端面固定在工作平台上。本实用新型用于锂硫电池的锂片裁切治具结构简单、合理、紧凑,能实现薄锂片的自动化加工,采用该治具裁切的薄锂片一致性佳,能适用于锂硫电池的负极材料。
本发明涉及一种钼掺杂的纳米纤维素基硅酸锰锂复合正极材料在锂离子电池中的应用。本发明引入过渡金属Mo,来改变Li2MnSiO4中锰离子周围的电子环境,调节其电子电导率。同时,本发明引入纳米纤维素作为碳源来改善Li2MnSiO4的电子电导率。本发明中的复合正极材料作为锂离子电池正极材料用,具有较高的结构稳定性、较高的放电比容量以及较好的循环稳定性。
本发明提供了一种锂离子电池负极材料Li4Ti5O12/TiO2/Ag及其制备方法,其采用水解辅助以及进一步煅烧的简单方法制备Li4Ti5O12/TiO2材料;随后,又采用AgNO3热分解以沉积金属Ag的方式,并加以超声辅助制得目标产物Li4Ti5O12/TiO2/Ag复合材料。本发明提供的制备方法简便、易操作,通过该方法制备而成的锂离子电池负极材料为纳米粒子结构,增大了材料的比表面积;同时在保持尖晶石型Li4Ti5O12优良特性的前提下,兼具了TiO2以及金属Ag的优势,进一步提高了其作为锂离子电池负极材料的电化学性能。
一种锂二次电池用球形纳米晶镍钴酸锂制备方 法, 将镍盐溶液、碱溶液和浓氨水溶液连续导入反应器, 混合搅 拌, 再连续溢出; 保持反应体系环境为非稳定状态, 将溢流出反应 物料以间歇方式回流到反应体系中, 用回流调整物料旋转状态, 改变反应物在反应体系内停留时间; 反应毕, 经陈化、清洗制成 中间产物球形纳米晶氢氧化镍NixCoy(OH)2; 取中间产物NixCoy(OH)2, 再取LiOH·H2O及Mz混合, 搅拌; 将所述反应物装入煅烧炉加热, 得镍钴酸锂LiNixCoyMzO2。它便于工业化生产, 电学性能好。
本申请提供一种超薄型石墨烯锂离子单体电池及石墨烯锂离子电池组,所述单体电池由正极极片、隔膜及负极极片层压后构成;正极极片包括正极铝箔集流体及设在正极铝箔集流体内侧表面的磷酸铁锂活性材料层;磷酸铁锂活性材料层上刷涂凝胶型电解液,以形成电解液层;隔膜的一面紧贴于电解液层;负极极片包括负极铜箔集流体及设在负极铜箔集流体内侧表面的负极活性材料层;负极活性材料层的主要成分是硅/炭‑石墨烯复合材料;负极活性材料层紧贴隔膜的另一面。作为负极活性材料,硅/炭‑石墨烯复合材料具有巨大的比表面积和容量,高导电率,在应用于石墨烯锂离子电池时,使得电池具有高导电率,高容量,性能优越等优势。
本发明提供一种碳包覆氟磷酸钒锂锂离子电池正极材料及其制备方法,碳包覆氟磷酸钒锂锂离子电池正极材料的制备方法包括以下步骤:将钒源、磷源及碳源加入到水中形成溶液,持续搅拌至形成稳定的粘稠状溶液或迅速固化;将步骤粘稠状溶液或固体干燥,在非氧化气氛下热处理,然后粉碎研磨得到黑色碳包覆磷酸钒粉末;将碳包覆磷酸钒粉末、氟化锂和氟源混合得到前驱体粉末,在非氧化气氛下,550‑750℃温度下烧结0.5‑10h得到碳包覆氟磷酸钒锂材料。该方法工艺路线简单、操作容易、生成成本低,能实现规模化生产。该方法制备的碳包覆氟磷酸钒锂锂离子电池正极材料物相纯度高、粒度均匀、具有优良电化学性能。
本发明公开了属于新能源材料制备技术范围的一种球形锂离子电池正极材料磷酸锰锂的制备方法。本方法首先采用共沉淀法,以LiOH?H2O和H3PO4为原料,其反应沉淀煅烧后得Li3PO4。之后以多元醇辅助水热法,取MnSO4?H2O和上述Li3PO4,在PEG400-H2O混合溶液中反应,将产物离心、干燥、过筛,得到LiMnPO4。将上述LiMnPO4与抗坏血酸球磨混合、煅烧,最终得到LiMnPO4/C复合材料。本发明方法制备的LiMnPO4/C复合材料呈球形,粒径尺寸在0.3~2μm之间,相比于已有制备方法,该方法的产物粒径控制更好,继承了前驱体的形貌,过程易控、成本低、产率高,为制磷酸锰锂正极材料提供了新方法。
一种磷酸铁锂锂离子电池正极片的制备方法,包括以下步骤:1)按质量配比,称取磷酸铁锂,乙炔黑和PVDF,置于容器中,并向容器中添加N‑甲基吡咯烷酮,调节粘度后,搅拌8~10h,获得正极浆料;2)将正极浆料涂敷于铝箔上,形成涂敷好的样品;3)将所述的涂敷好的样品进行真空冷冻干燥处理,冷冻温度为‑50~‑30℃,冷冻时间为4~6h,形成冷冻干燥后的样品;4)将冷冻干燥后的样品,进行真空干燥,真空干燥温度为85~100℃,干燥时间为8~10h,得到干燥后样品;5)将干燥后样品经压片与切片操作,获得磷酸铁锂锂离子电池正极片。该方法工艺流程简单,成本低,所制备的电池正极片性能良好,经测试,具有较高的首次放电比容量与放电效率。
本发明属于功能材料制备领域,具体涉及一种Ce‑Li‑MOF锂离子电池负极材料的制备方法及其在制备锂离子电池方面的应用,按如下步骤实施:(1)将苯四酸、硫酸铈及氢氧化锂分散在水溶液中,将上述水溶液置于反应釜中,在室温空气气氛下,得到橙褐色浆料后搅拌;(2)将步骤(1)所得产物转移至高压反应釜中,加热反应后,自然冷却至室温,得到淡黄色透明晶体;(3)将步骤(2)所得产物用去离子水洗涤,在自然条件下干燥,即得Ce‑Li‑MOF锂离子电池负极材料。本发明重现性好,目标产物形貌结构理想,所做成的纽扣电池电化学性能突出。
本发明提供一种锂离子混合电容器柔性钛酸锂负极及其制备方法,利用静电喷雾沉积法将钛酸锂沉积在不锈钢网上,并且引入十六烷基三甲基溴化铵(CTAB)对钛酸锂进行碳包覆改性。与传统电极制备方式不同,本次电极制备无需使用粘结剂等添加剂,同时利用不锈钢网的柔韧性配合薄活性物质层,最终获得了高倍率性能的柔性钛酸锂。
中冶有色为您提供最新的辽宁有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!