本发明涉及锂离子电池材料技术领域,具体涉及一种复合金属氧化物掺杂的锂离子单晶正极材料及其制备方法与锂离子电池。制备方法包括:配置镍源、钴源、锰源的金属盐溶液,沉淀剂和络合剂混合溶液,两种以上的掺杂金属氧化物的悬浊液;将金属盐溶液,混合溶液与悬浊液混合,搅拌进行共沉淀反应,获得沉淀物;将沉淀物进行预烧处理获得前驱体;将前驱体和锂源混合后进行烧结处理获得复合金属氧化物掺杂的正极材料。上述制备方法获得的正极材料具有优异的电容量、倍率性能与循环性能。
空心球状锂离子电池负极材料磷酸钒/碳的制备方法,包括以下步骤:(1)将钒源加入水中,加热搅拌,再加入磷源,加热搅拌,加入高分子表面活性剂,加热搅拌,得前驱体溶液;(2)喷雾干燥,得磷酸钒/碳材料的前驱体;(3)在惰性气氛下进行热处理,即成。本发明方法所得空心球状磷酸钒/碳中,磷酸钒为纯相,颗粒形貌均匀,为空心球状;其组装的锂离子电池,在0~3V,100 mA/g下,首次放电克容量高达1073.47 mAh/g,库伦效率稳定;首次可逆比容量达551.41 mAh/g,83次循环之后容量保持率为80.0%;本发明方法操作简单,成本低,适宜于工业化生产。
本发明公开了一种阻水阻燃的锂电池软包用铝塑膜及其制备方法,属于锂电制备领域。所述的阻水阻燃的锂电池软包用铝塑膜,以铝箔层为中层,其外依次设有阻水阻燃层、粘结层、共挤层以及耐磨层;其内依次设有阻水阻燃层、热固性塑胶层、粘结层、热封层;所述阻水阻燃层包括:有机硅树脂,三聚氰胺,三聚氰胺磷酸盐,六甲氧甲基三聚氰胺树脂,碳化微纤化纤维素,十二烷基硫酸钠。本发明通过采用六甲氧甲基三聚氰胺树脂,碳化微纤化纤维素,十二烷基硫酸钠为补强体系,提高阻水阻燃的锂电池软包用铝塑膜的阻水性和阻燃性。
一种制备锂电池正极材料γ- LiV2O5的方法。将化学计量的钒源、锂源和溶剂球磨混合,浆 料加热挥发,然后真空干燥,经煅烧,研磨后得γ- LiV2O5粉末;在γ- LiV2O5粉末中加入共晶熔盐,混合均匀后,氩气保护下保温处 理,快速冷却后捣碎压片,得γ- LiV2O5正极。本发明只需一次热处理即可得到单相的γ- LiV2O5;热处理温度较低,保温时间短,不会产生强氧化性的 熔融 V2O5相,不会对料舟或设备产生强烈的腐蚀作用;本发明所用 原料来源广,生产成本低;不需要高压、特殊设备,一次产出 率高,可实现规模生产;本发明所制备的γ- LiV2O5正极进行高温放电,终止电压为2.0V时的容量约为 400A·s·g-1;起始工作电压为 2.4V,比目前常用的FeS2正极的 电压高约0.3-0.4V。
一种采用磷酸盐改善的富锂锰基复合正极材料及制备方法。本发明正极材料包括富锂锰基材料和金属磷酸盐,所述金属磷酸盐为LiFePO4或Li3V2(PO4)3。本发明正极材料具备优异的稳定性和循环稳定性。本发明制备方法包括以下步骤:(1)将富锂锰基前驱体与锂源研磨混合,经固相法煅烧后冷却,得富锂锰基材料;(2)将金属源、锂源、磷源和有机碳源加入水中,得混合液,加热反应,喷雾干燥,煅烧,得磷酸盐;(3)将步骤(2)所得磷酸盐与步骤(1)所得富锂锰基材料混合,球磨,得所述富锂锰基复合材料。本发明制备方法工艺简单,原料成本低。
本发明提供了简单易行的一种高性能锂离子电池自支撑聚合物厚极片及其制备方法,包括如下步骤:(1)将锂离子电池正/负极材料与导电聚合物、导锂聚合物、增强剂、掺杂剂以及溶剂混合均匀制备浆料;(2)将所述浆料置于规则容器内,进行液氮急冷后再冷冻干燥;(3)将干燥后的极片经辊压模切后得到高性能锂离子电池自支撑聚合物厚极片,再组装电池;本发明高性能锂离子电池自支撑聚合物厚极片具备优异的三维导电与导锂网络,实现所制备极片有较快的电子和离子传输速度,负载量可控,具有较强的机械性能,无集流体,能量密度高,阻抗较小,电化学性能优异。
本发明公开了一种多金属复合氧化物包覆富锂锰基正极材料,在基体的表面包覆有多金属(Li、Gd、Nb、Zr和Sr)复合氧化物层。其制备方法:将纳米金属进行预活化处理;将预活化处理的金属粉末和高分子化合物加入含锂溶液中进行反应,再超声细胞破碎仪散,再加入富锂锰基正极材料基体,多功能分散机搅拌,同时加热形成凝胶;将凝胶加入机械融合机中,先在低速条件下进行机械预混合,再进行高速机械融合,完成对材料的包覆;最后退火处理,随炉自然冷却,得到多金属复合氧化物包覆富锂锰基正极材料。本发明的富锂锰基正极材料基体表面的包覆层能够阻止电极与电解液之间的反应,防止富锂锰基正极材料基体的容量衰减或循环性能恶化的现象。
本发明提供一种钴酸锂电池正极材料制备陶瓷级氧化钴的方法和陶瓷级氧化钴及其应用。钴酸锂电池正极材料制备陶瓷级氧化钴的方法:将钴酸锂电池正极材料用双氧水溶液进行浸泡,然后过滤得到的固体在氢气氛围下加热反应得到产物;产物经浸锂得到钴渣,在有氧氛围下加热反应得到产物;将产物用双氧水溶液进行浸泡,过滤得到氧化钴;将氧化钴烘干后进行粉碎得到陶瓷级氧化钴。陶瓷级氧化钴使用钴酸锂电池正极材料制备陶瓷级氧化钴的方法制得。陶瓷级氧化钴的应用,用于陶瓷着色。本申请提供的方法生产流程短、成本低,可实现锂电池材料的循环利用;不添加增加杂质的助剂,有害杂质少,后处理简单;陶瓷级氧化钴电导率低,陶瓷着色更加稳定。
本发明提供了一种回收废旧锂离子电池的方法,包括以下步骤:步骤一,浸泡放电:步骤二,拆解:步骤三,活性物质分离:步骤四,干燥、粉碎:步骤五,浸出:步骤六,沉淀:步骤七,初步蒸氨:步骤八,电解。本发明的方法不仅可以将废旧锂离子电池中的过渡金属制备成高附加值的正极材料前驱体,锂以碳酸锂或氢氧化锂回收利用;同时,废旧电池中的有害电解液及粘结剂等有机组分得以回收再利用,浸提用有机溶剂可循环利用;实现工艺流程中浸出剂、络合剂和沉淀剂闭路循环;无废水、废渣、废气排放;实现了废旧锂离子电池中有价组元全利用,显著降低了废水处理产生的环保成本,以及全流程的制造成本。
本发明提供了一种基于双功能LiMnO2的无负极锂金属电池制备方法,包括制备LiMnO2正极片;制备负极侧集流体;电解液配制及组分调控;将正极片、负极侧集流体与隔膜组装,添加电解液后,经过活化处理得到无负极锂金属电池。正极片采用的双功能LiMnO2在充放电过程中发生相变,具有充电比容量高,库伦效率低的材料特性,因而可以将LiMnO2材料包含的锂分为两部分进行充分利用,其中发生相变而导致的不可回嵌的锂能够在负极侧集流体沉积,用于弥补后续循环过程中负极侧的不可逆锂损失,延长循环寿命,而相变发生后回嵌的锂则可以在正极材料中继续进行电池循环,提升了无负极锂金属电池的循环寿命。
本发明公开了一种锂电池的SOC估算方法,包括获取待分析的锂电池的不可用电量和开路电压与荷电状态的曲线;得到锂电池的荷电状态初始值;采用安时法对锂电池的荷电状态进行在线估算。本发明提供的这种锂电池的SOC估算方法,通过对锂电池的不可用电量的计算并将其加入荷电状态的计算当中,从而使得本发明方法能够更加精准的估算锂电池的荷电状态,而且本发明方法简单可靠。
本发明公开了一种锂离子电池正极活性材料的回收方法及其应用,该回收方法包括:将锂离子电池正极活性材料在氢气氛围下进行煅烧反应,将得到煅烧产物用水进行三次浸出反应;然后将第一滤液和第二滤液混合并调节pH值≥12进行反应,过滤得到第四滤渣和第四滤液;将第四滤液在空气或二氧化碳氛围下与碳酸盐反应,过滤得到碳酸锂。本发明的回收方法可有效实现对废旧锂离子电池中的正级活性材料的回收和资源再利用,回收得到适用于锂离子电池的正极活性材料合成所需的工业碳酸锂;而且回收过程中基本不产生废水,环境友好,环保压力小,锂的回收率超过90%。
本发明是一种从卤水中分离镁和浓缩锂的方法,本技术分为以下几个部分:第一,通过化学反应,改变卤水组成,形成以锂、镁、氯根、硫酸根为主要成分的卤水,第二,将以锂、镁、氯根、硫酸根为主要成分的卤水进行强制高温蒸发,蒸发手段包括减压蒸发和常压蒸发,形成以硫酸镁、氯化镁为主要成分的固体,和镁锂比降低的卤水,卤水可以再次进行强制高温蒸发来进一步降低镁锂比,所形成的固体可以通过洗涤,返回盐田,返回强制蒸发等手段回收其中的锂。本技术具有节能,环保,锂回收率高等特点。
本发明公开了三元正极材料晶格锂可溶出量的测定方法,包括:先采用电位滴定法测定三元正极材料表面的碳酸锂和氢氧化锂的质量分数,取物料进行水洗,水洗后收集滤液并采用电感耦合等离子体发射光谱检测;称量水洗干燥后的三元材料,并采用电位滴定法测量水洗干燥后的三元材料中表面碳酸锂和氢氧化锂的质量,最终能精确分析晶格锂的可溶出量。本方法能实现水洗对材料结构破坏程度的计量,对三元正极材料晶格锂溶出含量的精确测量和分析,能有效促进对于三元正极材料水洗后结构变化的定量分析,有助于探究水洗过程对材料结构、组分及电化学性能的影响机理,深入研究三元正极材料结构与电化学性能之间的构效关系,具有高效准确、应用范围广泛等优点。
本发明提供了一种锂离子电池荷电状态估计方法及装置,所述方法包括离线训练阶段和在线估计阶段:所述离线训练阶段,基于历史放电电压数据和温度数据提取锂离子电池在各个历史时刻的特征;将锂离子电池在一个历史时刻的特征作为一个样本,基于样本数据训练回归预测模型;所述在线估计阶段,基于实时放电电压数据和温度数据提取锂离子电池在当前时刻的特征;将锂离子电池在当前时刻的特征输入回归预测模型,输出锂离子电池荷电状态估计值。本发明基于锂离子电池单体在放电过程中的端电压和温度数据来实现荷电状态估计,相比于现有的荷电状态方法,本发明不仅无需初始荷电状态信息、不存在累积误差,且能适用于在线估计场景。
本发明公开了一种包覆改性的锂离子电池正极材料,包括富锂三元材料基体LixNi1‑a‑bCoaMbO2,基体的外表包裹有纳米缺锂型的尖晶石型锂锰氧化物包覆层Li4‑dMn5O12,M为Mn、Al中的至少一种;该正极材料的制备方法包括:将镍钴三元前驱体和锂源混合,经高温煅烧处理得到富锂三元材料基体;通过酸浸渍将纳米级锂锰氧化物中的部分锂离子浸出,得到缺锂型的尖晶石型锂锰氧化物;将富锂三元材料基体与缺锂型的尖晶石型锂锰氧化物混合均匀,经过煅烧热处理后得到包覆改性的锂离子电池正极材料。本发明的制备方法加工性好、工艺简单、节能环保,且产品结构稳定、锂镍混排低、电化学性能更好。
本发明提供一种用于卤水中镁锂分离及提取锂的钒氧化物,所述钒氧化物为VO2、LiV2O5、LiV3O8中的一种或几种。本发明还提出所述钒氧化物在镁锂分离中的应用,使所述钒氧化物与含锂溶液接触,通过改变体系电势使正高价钒被还原,同时锂离子作为配衡离子进入钒氧化物的晶格,而镁离子仍留存于溶液中。本发明提出的钒氧化物,能处理不同镁锂比的卤水,特别适合高镁锂比的卤水。利用Li+在钒氧化物中优良的嵌入和脱嵌性能实现锂的提取,进而生产碳酸锂或其他锂盐。本发明提出的钒氧化物对Li+具有很好的选择性,且吸附量大,Li+吸附量能达到60mg/g钒氧化物以上,稳定性好,能有效从卤水中提取锂。
本发明公开了一种CoMn2O4/NC/S复合材料及其制备方法和作为锂硫二次电池正极的应用。CoMn2O4/NC/S复合材料由锰酸钴(CoMn2O4)纳米颗粒锚钉在氮掺杂石墨化多孔碳(NC)上再与硫复合而成,其制备方法:将金属有机骨架材料ZIF‑67焙烧处理,得到Co‑N‑C复合材料,再与锰盐及高锰酸盐进行水热反应,得到CoMn2O4/NC复合材料;进一步与硫复合,即得CoMn2O4/NC/S复合材料。该复合材料能对锂硫二次电池充放电过程中形成的多硫化物同时进行强烈的化学吸附和物理吸附,能有效抑制多硫化物的溶解流失,减少穿梭效应的发生,提高了锂硫二次电池的寿命。同时该方法用廉价低毒的Mn部分替代昂贵有毒的Co应用于锂硫二次电池,具有重要的创新和实践意义。
本发明公开了一种改性的磷酸锰锂复合正极材料及其制备方法,以解决现有磷酸锰锂正极材料导电性差,倍率性能差和循环不稳定的问题。本发明的复合正极材料的名义分子式为yLiMnPO4·(1-y)Na3V2(PO4)3-xF3x/C,其中,0≤x≤2;0.75≤y<1。步骤包括:1)LiMnPO4粉末与改性前驱原料的机械活化分散;2)控制制备磷酸锰锂/含钒胶体前驱体;3)一步煅烧法制备磷酸锰锂/(氟)磷酸钒钠/碳复合材料。本发明的有益效果在于:工艺过程简单,分散均匀,易于控制,协同改性的LiMnPO4基复合材料比能量密度高、循环性能好、倍率性能优异。
本发明提供了一种非化学计量比的氟磷酸钒锂正极材料及其制备方法,按照锂、钒、氟、磷元素摩尔比为1:1:(1‑x):(1+3x)(‑0.1≤x≤0.2)的比例混合配料,经高能球磨‑两段烧结,得到高倍率电化学性能优异的锂离子电池正极材料氟磷酸钒锂LiV(PO4)1‑xF1+3x。该方法通过调节正极材料中氟和磷的比例,控制低温预烧结和高温煅烧的时间和温度,对材料的晶体结构和缺陷进行调控优化,提高材料导电性,改善材料倍率性能及高倍率下的电化学性能。此方法周期短,简单易行,成本低廉。
本发明公开了一种制备暴露(0,2,0)晶面的Cu2ZnSnS4薄膜锂离子电池电极的制备方法及其在薄膜锂电中的应用;利用磁控溅射,溅射一层同种金属的硫化物预制层,而后在含有H2S的气氛中利用三种金属靶共溅射直接反应溅射活性物质一步成膜。所述薄膜置于保护性气氛中,高温退火,即得到相应的薄膜电极。这种利用反应溅射合成的薄膜具有特定的结构特征,提高了锂离子的传输效率,提高了材料的能量密度发挥,在锂离子电池中能有效降低电极极化,提高放电性能和循环稳定性。
本发明涉及活泼金属熔炼技术领域,提供了一种超声波辅助铸造装置及制造铝锂合金的方法。本发明提供的装置包括熔炼炉、铸造设备和超声波振动系统。本发明增加了超声波振动系统用于辅助铸造,在超声外场的作用下对坩埚和铸模内的宏观温度场、流场、溶质场进行调控,减少结晶相的偏聚,实现高品质铝锂合金铸锭的制备;本发明的装置可以在不同的铸造阶段根据工艺的需要对炉腔内的气氛进行控制,从而增加了整个工艺链的可拓展性。利用该装置制造铝锂合金,能够提升铸锭组织均匀性,抑制粗大晶粒的形成,适用于不同直径的铝锂铸锭生产。
本发明公开了一种POSS接枝碳纳米管改性的锂硫电池隔膜的制备方法,以羧基化碳纳米管(CNTs‑COOH)为原材料,将笼型倍半硅氧烷(POSS)接枝到CNTs表面得到CNTs‑POSS材料;然后将制备得到的CNTs‑POSS与聚醚酰亚胺(PEI)、造孔剂、有机溶剂按一定质量比配制成溶液,将得到的溶液放置油浴锅中恒温加热、搅拌直到CNTs‑POSS均匀的分散在PEI基体中形成铸膜液;将得到的铸膜液流延在PE隔膜上用刮刀均匀的涂覆于PE隔膜上,即得到POSS接枝碳纳米管改性的复合锂硫电池隔膜。本专利合成具有截硫导锂功能的POSS基类固体电解质,与聚醚酰亚胺/聚乙烯(PEI/PE)高强耐热隔膜复合,构筑类固体电解质修饰高强复合隔膜,用于解决锂硫电池中多硫离子穿梭导致的容量衰减和非正常工作状况下枝晶刺透导致的安全风险。
本发明提供了一种磷酸铁锂正极材料的制备方法,向磷酸和三价铁盐溶液中加入掺杂用化合物,分别采用两种方式加入热解碳源和碳化促进剂,加入碱性溶液,控制体系的pH在1~4范围,反应一定时间,经洗涤——干燥,得到磷酸铁前驱体;将锂源、前驱体、热解碳源和碳化促进剂混合,经搅拌(或球磨)——真空干燥——热处理——研磨,制备掺杂和包碳的磷酸铁锂。本发明在制备磷酸铁前驱体的过程中加入掺杂化合物、热解碳源及碳化促进剂,改善了磷酸铁锂晶格内部的导电率及其颗粒间的导电率,明显提高了其在高倍率时的电化学性能;且本发明不再使用高售价的二价铁,极大降低了生产成本。
二次沉积法制备掺杂多种元素的锂电池正极材料的方法,首先用共沉积的方法在Li(CoxNiyMnz)O2中进行Al,Mg,Ti,Cr元素中至少二种的掺杂和包覆,形成中间体A;然后又用共沉积的方法在中间体A上形成Co(OH)2包覆的中间体B,最后通过一定温度和时间的二次烧结后形成产品Li(CoxNiyMnzAlaMgbTicCrd)O2-kLiCoO2。所得正极材料在保证锂电池产品具有成本低、充放电容量高、安全性能好的同时,还具有良好的与电解液的相容性,使200次循环容量下降控制在10%以内,500次循环容量下降控制在20%以内;将3.6V以上的放电平台提高到占总容量的70%以上;产品的稳定性好。
本发明公开了一种利用三元锂离子电池正极废料制作铝掺杂镍钴锰三元前驱体的方法,该方法包括如下步骤:将锂电池正极片废料破碎、焙烧,得到三元正极材料和铝箔,加入酸和还原剂反应浸出,使用磷酸三丁酯对浸出液进行选择性萃取分离锂,得到镍钴锰铝溶液;配入相应的镍源、钴源、锰源,调整镍钴锰铝的配比,得到配合MS溶液;将MS溶液与氨水、碱金属氢氧化物混合,反应后得到铝掺杂三元前驱体。本发明所用了的方法避免了正极极片中的铝分离及后续铝除杂工序,直接通过配入相应的镍、钴、锰盐得到了相应比例的铝掺杂三元前驱体,经济合理,具有良好的市场前景。
本发明公开了一种一步溶胶凝胶法合成磷酸钒锂/碳复合材料的方法,该方法将锂源化合物、钒源化合物、磷源化合物、螯合剂和碳源直接混合装入密闭容器,在密闭容器内加入去离子水进行加热搅拌来获得干凝胶前驱体混合物,依次在惰性气体保护气氛和还原性混合气体保护气氛下对干凝胶前驱体混合物进行烧结后,得到高性能的磷酸钒锂/碳复合材料。该方法的工艺简单、易于操作,不仅具备了溶胶凝胶法合成温度低、产品均匀性好粒径小、电化学性能好的优点,而且克服了溶胶凝胶法操作复杂繁琐、污染大和成本低的缺点;并且在密闭容器下进行溶液反应,能有效抑制和防止因反应过程太过剧烈而产生暴沸、喷溅,可进一步增加实验的可控性和准确性。
本发明一方面提供一种动力汽车用锂电池隔膜,其具有四层,自下而上依次为基膜、纳米阻燃层、静电纺丝纳米纤维层和热闭合层,其中,基膜为厚度5μm~20μm的PET核孔膜,纳米阻燃层为0.5μm~10μm的阻燃陶瓷浆料,静电纺丝纳米纤维层厚度为2μm~5μm,热闭合层为厚度5μm~10μm的耐高温环氧树脂;本发明还提供了该锂电池隔膜的制备方法;按照本发明方法所制备的锂电池隔膜耐热收缩性能大幅提高,热稳定性和热闭合性显著提高,安全性非常好。
本发明公开了一种以废锂离子电池负极材料为原料制备高容量高倍率石墨方法,包括:将所述负极材料剪成碎片后放入炉中进行加热,得到粉末;将粉末在水中混合和进行超声波振动处理,然后过滤烘干,得到剩余粉末;将所述剩余的粉末通过不同网目筛网筛分,得到铜粒和高纯石墨,后续再将高纯石墨放入水中超声分散,再加入溶解了有机糖原的水中,通过水浴加热搅拌蒸干水分,再进行烘干,最后通过管式炉无氧加热碳化,得到具有更好电化学性能的石墨。本发明提供了一种回收电化学性能好且可用于工业生产的锂离子电池负极材料回收利用方法,通过对废锂离子电池负极进行高温热处理、超声波振动、过、筛分和碳包覆来实现负极中电池级石墨的回收。
本实用新型公开了一种锂电池脱水预烧辊道炉结构,包括炉体,所述炉体中设有用于加热锂电池的炉腔;保温纤维板,所述保温纤维板四面环绕于炉腔外壁,用于保持炉腔内的温度;其中:所述保温纤维板顶部和两侧面内壁上均贴合有水汽隔板,炉腔的底部设有V型的排水腔,所述排水腔的两端与两侧面的水汽隔板相接,所述排水腔连接有用于向外排水的排水管道。本实用新型的优点是:通过在保温材料内设置水汽隔板,能够在锂电池原料进行预烧时,将原料中加热析出的水蒸气冷凝,形成液态水,液态水再通过与水汽隔板相连的V型排水腔排出炉腔,水汽隔板的设置能够将水汽与保温材料隔绝,避免保温材料吸收水汽影响自身寿命,降低保温效果,也能够防止设备的漏电现象。
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!