本发明涉及一种微纳米复相颗粒增强铜基复合材料及其制备方法、铜合金原料粉的制备方法。铜基复合材料的制备方法包括:1)将B粉、Ti粉进行高能球磨混合,得到B‑Ti混合粉;2)将Cu‑Al合金粉、B‑Ti混合粉、Cu2O粉进行普通球磨混粉,得到铜合金原料粉;3)将铜合金原料粉进行热压烧结和热挤压,即得。该制备方法通过高能球磨、普通球磨混粉、内氧化和热压烧结过程在铜基体中同时原位生成纳米Al2O3颗粒和亚微米TiB2颗粒,其中Al2O3颗粒弥散分布于晶粒内,而亚微米TiB2颗粒分布于晶界处,形成微纳米复相颗粒增强结构,微纳米颗粒的协同作用提高了铜基复合材料强度和导电性能。
本发明公开了一种NiCr、碳纤维增强铝镁基复合材料及其制备方法,由Zn、Ti、Si、Co、Zr、Mg、NiCr、碳纤维和Al制备而成,将碳纤维剪短后经、灼烧、稀硝酸溶液中煮沸、冲洗、碳酸氢钠溶液浸泡、过滤、浸泡和冲洗,将处理后的碳纤维按配比与其他原料进行混合,用球磨机进行研磨,将得到混合料粉在真空压力下进行烧结,自然冷却至室温,即可。本发明复合材料采用NiCr和碳纤维颗粒在基体中弥散分布,起到了强化作用,使基体的强度和模量得到明显提高。本发明复合材料具有良好的力学性能和成形能力,可以广泛应用于要求高强度、高模量的形状复杂零件上,同时在航空航天、国防、工业等领域也有着广泛的应用。
本发明公开一种受电弓滑板用短切碳纤维增强碳/碳复合材料的制备方法。将短切碳纤维、中间相沥青粉和分散剂放入水中制成料浆;将料浆倒入金属容器中,放入冷冻干燥设备内冷冻干燥,制得碳纤维增强体;对制备的碳纤维增强体进行模压成型,制得坯体;对制备的坯体进行碳化处理;将碳化处理后所得材料,浸渍中间相沥青;将浸渍中间相沥青后所得材料进行碳化处理;重复浸渍‑碳化4~6次;石墨化处理,即得目标材料。本发明制备的短切碳纤维增强碳/碳复合材料具有良好的导电性、抗冲击性能好,克服了现有技术制备的碳/碳复合材料受电弓滑板的导电性差、抗冲击能力弱的缺陷。
本发明公开了一种负载型纳米氧化锌复合材料,采用如下方法制备:将橡胶用炭黑加入到硫酸锌溶液中搅拌分散,然后滴加碳酸氢铵溶水溶液直至沉淀完全,过滤得到沉淀,用去离子水洗涤至无硫酸根;将沉淀干燥后,在惰性气体保护下于200~300℃下煅烧2~4小时,得到负载型纳米氧化锌复合材料。本申请负载型纳米氧化锌复合材料,将纳米氧化锌负载在橡胶用炭黑上,纳米氧化锌具有更高的活性,其中锌原子的利用率高,添加量仅为普通氧化锌的30%~50%,可以大大节省纳米氧化锌资源。
一种导电性复合材料,包含导电性聚合物和粒径1000NM以下的纳米石墨,此导电性复合材料具有增强对材料间的紧贴性,制膜性,低电阻率,而且在高温环境下也能维持低电阻率。一种复合电极,由纳米石墨和导电性聚合物的导电性复合材料的导电膜和石墨片,铝片,铜片,镍片(NI),钢片,金属合金,泡沫导电性材料,导电性氧化物等的导电体而组成,此复合电极,具有减小的电阻率,高电子放射能,而且在高温环境下也能维持低电阻率。使用此复合电极的发光器件具有高亮度的优异性能。
本发明公开了一种溶胶静电自组装方法制备Fe3O4纳米颗粒/石墨烯复合材料的方法,它的步骤如下:(1)制备表面带有正电荷的Fe(OH)3溶胶溶液;(2)制备表面带有负电荷的氧化石墨烯溶胶;(3)将氧化石墨烯溶胶和Fe(OH)3溶胶混合,磁力搅拌下出现棕黑色沉淀,分离,倒掉上层清液,得到Fe(OH)3和氧化石墨烯的复合物,将复合物在300-800℃、氮气气氛下还原,制备得到Fe3O4/石墨烯纳米复合材料。Fe(OH)3胶体颗粒与氧化石墨烯的复合物是在水溶液中进行的,成本低廉且节能环保,工艺简单,易于工业上量产;Fe(OH)3胶体颗粒与氧化石墨烯复合材料的制备过程中有明显的溶液变化,溶液颜色从澄清变浑浊到最后出现沉淀,直接倒掉上清液即可。
本实用新型公开了一种硼铝复合材料回收用高温熔化炉,包括安装基座,所述安装基座的上表面设置有熔化炉,所述熔化炉的侧面设置有把手,所述熔化炉的顶部开设有进料口,所述进料口的内部设置有转动杆,所述进料口的侧面设置有电机板,所述电机板的上表面设置有转动电机,所述转动电机的输出轴顶部与转动杆连接,所述转动杆表面设置有粉碎轮,所述进料口远离电机板的一侧设置有侧板,所述转动杆与侧板转动连接,所述熔化炉的内部设置有加热仓,所述加热仓内部设置有加热网。本实用新型通过设置有一系列的结构,使硼铝复合材料的体积变小,方便对硼铝复合材料进行回收熔化,提升装置的熔化效果,且增加了装置的保温效果,提升了装置的灵活性。
本发明提出了一种具有榫卯结构的聚合物‑立体纤维布复合材料及其制备方法,复合材料包括立体纤维布和聚合物;立体纤维布包括二维基层平铺面以及垂直与二维基层平铺面的凸出纤维结构;其中二维基层平铺面与凸出纤维结构一体编制成型;其中二维基层平铺面覆在聚合物表面上;凸出纤维结构包埋于聚合物中,与聚合物形成榫卯结构。本发明聚合物与立体纤维布间形成的榫卯结构提高了二者的界面作用,利用立体纤维布与混凝土、钢铁等基材良好的粘接性能,形成中间层,实现了聚合物与混凝土、钢铁等基材间的良好且可靠粘接性,保证聚合物/纤维布复合材料在使用过程中的长期稳定性,保证了工程质量。
本发明公开了一种耐腐蚀碳纤维铝合金复合材料及其制备方法,该制备方法包括以下步骤:(1)按照质量分数称取2.5‑8%碳纤维和92‑97.5%铝合金;(2)对铝合金样品表面依次进行机械处理、碱洗和除尘处理,然后进行干燥,备用;(3)将经过预处理的铝合金进行电化学腐蚀,使铝合金表面出现均匀分布的纳米孔洞氧化层,然后再进行冲洗、干燥,备用;(4)将碳纤维进行预热,然后采用压力浸渗法将预热后的碳纤维渗入到经过电化学腐蚀的铝合金中;(5)将已渗入碳纤维的铝合金进行加热保温,然后冷却至室温,得所述耐腐蚀碳纤维铝合金复合材料。通过该方法制得的碳纤维铝合金复合材料应用在输电线路接续金具材料中,具有很好的耐腐蚀性和力学性能。
本发明属于碳点制备技术领域,具体公开了一种碳点以及碳点基复合材料的制备方法。本发明采用绿色无污染的乙二胺四乙酸四钠为合成碳点的原料,通过加入适量的氢氧化钠,通过用微波炉加热一定时间就可以得到碳点,这个合成过程极其简单且易操作;再分别向得到的碳点溶液中加入聚乙烯醇或聚丙烯酰胺进行微波加热,得到碳点基复合材料(包覆的碳点),该碳点基复合材料具有RTP特性的、长余辉发射特性,可在光电设备、生物成像、显示设备、传感器等领域中应用。
本发明涉及一种自润滑Al2O3弥散强化铜碳导电复合材料及其制备方法,属于导电耐磨材料技术领域。本发明的自润滑Al2O3弥散强化铜碳导电复合材料,由以下质量百分比的组分组成:0.3~0.6%Al2O3,0.5~2.0%碳纤维,余量为铜。本发明的自润滑Al2O3弥散强化铜碳导电复合材料,在Al2O3弥散强化铜合金材料中加入碳纤维,使得Al2O3弥散强化铜合金材料在保持原有的高强度、高导电率的基础上,有良好的自润滑性能,从而显著提高Al2O3弥散强化铜合金材料在载流摩擦磨损条件下的耐磨性。
本发明涉及纳米材料技术领域,特别是指一种负载双金属纳米的多功能纸基复合材料的制备方法及其应用。步骤如下:金钱草提取液制备,金银合金纳米粒子绿色制备和负载金银合金纳米的纸基复合材料制备。本申请的双金属纳米是用金钱草提取液绿色还原合成的金银双金属纳米,纸基复合材料的多功能用途包括催化转化和抗菌应用,与单金属纳米催化性能及抑菌性能相比有显著提高。
本发明公开了一种聚丙烯基复合材料及其制备方法,所述聚丙烯基复合材料由以下材料组成,以聚丙烯重量份数100份计,聚酰胺为10~100份,功能化聚丙烯相容剂2~30份,润滑剂0.5~5份,增塑剂0.5~5份,稳定剂0.01~1份。新型功能化聚丙烯相容剂的加入,能够很好地促进聚丙烯与聚酰胺的相互混合,增容效果明显,功能化聚丙烯相容剂的合成能够保持聚丙烯粉料原有外形,减少了后续材料再加工成型的步骤,聚丙烯基复合材料共混挤出时各加热段温度和螺杆转速的调控能够极大程度上促进功能化聚丙烯相容剂在聚丙烯和聚酰胺中的分散,从而很好地展示功能化聚丙烯相容剂的增容效果,制备过程简单方便,适于大规模工业化生产。
本发明属于管道修复补强或增强技术领域,涉及复合材料对管道修复补强或增强的方法,主要包括管道缺陷定位、管道表面处理、管道缺陷填平、涂底胶、碳纤维复合材料的缠绕、固化及补强或增强防护层七个步骤;其中管道缺陷定位采用无损检测的方法;管道缺陷填平采用热喷涂金属合金的方法;固化分为常温固化和高温固化;防护层包括涂覆封闭涂料和缠绕外防腐层;本发明中,操作简单且不受工件形状及大小的限制,修复效率高,成本低,能耗少且复合材料与管道的结合强度高,修复层使用寿命长。
本发明属于电子元器件技术领域,公开了一种基于生物辅助自组装的磁电纳米复合材料的制备方法,首先分别合成叠氮基修饰的铁磁、铁电纳米颗粒,再利用CuAAC点击反应在Cu(II)的催化作用下,将5端经己炔基修饰的RNA分别与叠氮基修饰的铁磁、铁电纳米颗粒在一定条件下反应并聚合,使得叠氮基的表面修饰的铁磁和铁电纳米颗粒与RNA链键合,最后将与RNA链键合的铁磁、铁电纳米颗粒混合即可得到磁电纳米复合材料。本发明制备出的磁电纳米复合材料,结构有序,具有较高面体比,在外加偏置磁场的作用下展现出显著的磁介电效应,为磁电纳米材料在高密度信息存储、药物运输、自旋电子器件及生物器件上提供了广阔的应用前景。
本发明公开了一种利用废弃花生壳及铁锈通过固相烧结法一步制备Fe3O4/C磁性复合材料的方法,属于复合功能材料的合成技术领域。本发明的技术方案要点为:将花生壳和铁锈分别经过清洗、干燥处理后研磨,再将研磨后的花生壳粉料和铁锈粉料按质量比1:2的比例混合研磨1‑2h,取研磨后的混合粉料置于流量为10mL/min的体积百分数为3%H2/97%Ar还原气氛的烧结炉中,以5℃/min的升温速率升温至550℃并保温30min,然后冷却至室温得到Fe3O4/C磁性复合材料。本发明所制得的Fe3O4/C磁性复合材料结构优异在染料吸附方面效果显著,且在磁场下可方便分离,可重复利用。另一方面实验所需的条件和仪器简单易得,可实现工业批量化生产。
本发明属于二硼化钛基复合材料的制备领域,公开了一种碳纤维增强二硼化钛基复合材料的制备方法。将液态酚醛树脂分散于无水乙醇中;将TiB2粉加入所得溶液中,40~60℃搅拌均匀;将碳纤维粉加入所得溶液中,60~80℃继续搅拌,直至浆料粘稠不能搅拌为止;将浆料烘干,造粒过筛,将所得颗粒粉置于模具中,压制成型,得到坯体;用硅粉、钛粉中的一种或两者的组合物包覆坯体,置于石墨坩埚中,在真空1550~1650℃下反应1~3 h,即得到碳纤维增强二硼化钛基复合材料。本发明具有工艺简单、操作方便等优点,C/TiB2同时具有碳纤维和二硼化钛的优点,并且克服了TiB2脆性较大等缺陷。
本发明设计的一种用于水净化的复合材料的制备方法含有,(1)将水中加入聚丙烯酰胺,搅拌均匀后,静置0.5?2小时,在上述物料中,加入碳纳米管、壳聚糖、环糊精和聚乙二醇,待搅拌均匀后,再加入戊二醛;用反应釜将上述2的物料加热,加热的温度为55?75℃,加热时间为14?21分钟;采用超声去除气泡,静置后,便得到用于水净化的复合材料。本发明用于水净化的复合材料,制备工艺方法简单,适合工业化生产。
本发明属于挖掘机的主要部件,涉及一种复合材料浇注铸造的挖斗和生产工艺及装置;挖斗按工作部位分为挖斗前半部(5)、挖斗后半部(6);挖斗前半部(5)、挖斗后半部(6)分别为两种不同材质的复合材料,使挖斗前半部(5)、挖斗后半部(6)分别具有工作时所需的耐磨性能、抗冲击韧性,适应挖斗的前半部(5)、后半部(6)工作的需要。在挖斗的斗体外壁上具有斗体浇注成型时与斗体同时成型的加强筋板(1);铸造成型装置包括:连体的底箱、芯子砂型和外模砂型;设置两个浇注管并采用两次浇注的方式。本发明所提出的复合材料挖斗,耐磨性是普通16Mn碳钢板焊接挖斗的三倍以上,其抗冲击韧性是普通16Mn钢板焊接挖斗的两倍以上。
本发明公开了一种聚双环戊二烯/聚丙烯酸酯类复合材料及其制备方法,其中聚双环戊二烯/聚丙烯酸酯类复合材料主要是由以下重量份的单体同步共混聚合而成:双环戊二烯单体70-99份,单丙烯酸酯类单体1-30份,二乙烯基苯单体0.1-10份。本发明的聚双环戊二烯/聚丙烯酸酯类复合材料中,聚丙烯酸酯类具有较好的柔顺性,与二乙烯基苯单体相结合弥补了聚双环戊二烯材料韧性的不足,相比单一的聚双环戊二烯材料在保持原有拉伸强度的情况下其冲击强度提高了25%以上。
本发明属于光催化材料技术领域,涉及一种具有p‑n结的四氧化三钴/铌酸盐复合材料的制备及其应用。该复合材料包括Co3O4和K7HNb6O19,K7HNb6O19与Co3O4之间形成p‑n异质结构,Co3O4和K7HNb6O19的质量比为1:2.5~25。制备方法为:将Co3O4和K7HNb6O19加入高纯水中,搅拌后加入乙醇,搅拌并超声,将混合溶液转移到高压釜中,在160℃下保持12h,将产品自然冷却至室温,离心洗涤,烘干过夜。本发明的复合材料由于p‑n结的形成加快了载流子的迁移速率,降低了光生电子‑空穴的复合速率,在光催化过程中会伴随着氧空位浓度的增加,降低了载流子的复合,从而提高光催化性能。
本发明涉及一种便于一次喷涂成型的石膏基复合材料及其施工方法,属于建筑用材料技术领域;一种便于一次喷涂成型的石膏基复合材料,其特征在于:该复合材料为双组份体系,分别为组分A和组分B,组分A以重量份计包括以下物料:半水石膏15‑100份、纤维1‑10份、碳酸钙0‑30份、石墨0‑5份、发泡剂0‑10份、缓凝剂1‑15份,组分A还包括海泡石、膨胀珍珠岩、蛭石、EPS颗粒中一种或两种的混合物,其重量份数为5‑40份;组分B为改性氢氧化铝,组分B占组分A重量的5‑30%。通过该防火材料可以实现对基材一次喷涂厚度达到70mm且不出现流挂现象,避免了工人对基材进行多次喷涂,减少了多次喷涂所需要的等待时间,大大缩短了工期。
本发明涉及一种宏量化中高体分铝基复合材料及其高压制备工艺。所述工艺为:将陶瓷粉末和铝基体粉末进行混合;将混合粉末置入金属包套内冷压,再对所述金属包套封焊,并焊接抽气管;将所述金属包套放入钢模具内,装入电阻炉加热,然后再采用真空抽气装置在炉外对抽气管进行抽气,最后将抽气管封焊;将所述钢模具加热保温完毕后移至压机下,对所述钢模具进行四周约束紧固,然后进行双向加压复合;待模具冷却后取出坯锭,并去除包套即可。通过上述工艺可以获得均匀致密的微观组织,在复合材料中没有颗粒偏聚区域和孔洞存在,同时可以抑制有害界面的反应,颗粒增强体的体积分数可高达80%,在提高颗粒体积分数的同时,提高复合材料的力学性能。
本发明属于纳米材料技术领域,具体涉及一种硅氧碳复合材料、制备方法及锂电池材料,硅氧碳复合材料为硅@碳@氧化硅@碳复合物,该硅@碳@氧化硅@碳复合物以纳米硅为内核,纳米硅的外周依次包覆三层包覆层,三层包覆层依次为第一碳包覆层、氧化硅层和第二碳包覆层,第一碳包覆层作为外壳包覆于所述纳米硅外周,氧化硅包覆于第一碳包覆层外周,第二碳包覆层包覆于氧化硅层外周,氧化硅层设置通孔。本发明的复合材料氧化硅具有较为坚固的结构能够较好的抑制纳米硅的膨胀,第一碳包覆层使得其具有较好的导电性能,硅氧碳负极材料在锂离子电池中表现出来较高的比容量和良好的循环性能。
本发明涉及一种具有电磁屏蔽和吸收效能的轻质高强石膏复合材料,按重量份数计包括:半水石膏30‑40份;II型无水石膏20‑25份;石墨烯溶液2‑8份;矿物掺合料5‑10份;羟乙基纤维素醚0.05‑0.2份;十二烷基硫酸钠0.3‑0.7份;稳泡剂0.2‑0.5份;水20‑35份;所述的稳泡剂为聚丙烯酰胺、聚乙烯醇中的一种或两种复合。本发明所得石膏复合材料具有优异的力学强度和电磁屏蔽效能,同时密度小,导热率低,耐水性好,是一种具有优异力学强度和电磁屏蔽效能的轻质石膏复合材料,可以用作普通工业、民用建筑,尤其是具有特殊环境需求的医院及军事基地的非承重墙体材料或装饰材料。
本发明提供了一种耐高温尼龙石墨烯复合材料,它由包括以下重量份的组分制成:尼龙盐95~105份、氧化石墨烯2~10份、有机纳米蒙脱土2~6份、膨胀石墨3~8份、硅烷偶联剂KH560 2~6份、固含量为20%~25%的纳米碳溶胶1~4份、纳米二氧化钛1~4份、滑石粉1~3份、硅灰石2~5份、封端剂0.2~1份、6‑氨基己酸0.1~0.6份、去离子水40~70份。本发明还提供一种上述耐高温尼龙石墨烯复合材料的制备方法。本发明提供的上述耐高温尼龙石墨烯复合材料具有比较好的阻燃、耐高温以及力学性能。
本发明涉及一种锂电池用硅复合材料及其制备方法、锂电池,属于锂电池技术领域。本发明的锂电池用硅复合材料,具有核壳结构,所述核为硅颗粒,所述壳包括包覆在硅颗粒表面的中间层以及包覆在所述中间层表面的外层,所述中间层包括非电子传导性高分子材料,所述外层包括无机锂化合物,所述无机锂化合物为LiBH4、Li3N、Li2NH、LiBNH6、Li1.8N0.4Cl0.6中的一种;所述中间层与外层的厚度比为1‑5:1‑5。本发明的锂电池硅复合材料在硅材料颗粒表面包覆非电子传导性高分子材料及无机锂化合物,在硅材料颗粒表面包覆无机锂化合物能够提高充放电过程中锂离子的数量,进而提高其首次效率及比容量和循环性能。
一种用于铺设塑胶跑道的聚氨酯复合材料及其制备方法,由A组分和B组分按重量比2 : 1的比例混合而成,B组分由二苯基甲烷二异氰酸酯和聚醚二元醇制成,A组分由聚醚三元醇、聚醚二元醇、交联剂、增塑剂、环氧树脂、丙烯酸酯和增强剂制成。本发明的聚氨酯复合材料中含有改性纳米二氧化硅,从而使得在材料受到外力冲击作用下,能够产生 “应力集中”的效应,使得其周围的一些基体“屈服”并吸收较多的变形功,此外也能够产生 “钉扎‑攀越”效应,增大裂纹在扩展时所受到的阻力,消耗变形功,从而使其韧性和弹性增加,而通过加入改性六钛酸钾晶须,更进一步的增强其表面性能,从而提高复合材料的力学性能。
本发明涉及利用钾长石制备碳酸锂/白炭黑复合材料的方法,主要包括以下步骤:首先利用钾长石、氟化铵、浓硫酸为原料制取白炭黑浆液,然后依次向所述白炭黑浆液中加入氢氧化锂水溶液和碳酸钠水溶液进行反应,经陈化、过滤、洗涤、烘干后获得碳酸锂/白炭黑复合材料。本发明制备的复合材料在赋予了白炭黑材料导电性的同时,使得碳酸锂作为电解质时具有吸附杂质的能力,从而提高了碳酸锂的电导率。
本发明涉及一种利用三聚氰胺甲醛泡沫制备导热复合材料的方法,利用三聚氰胺甲醛泡沫自身的丰富微观孔洞结构,将其碳化后,得到易于制备、造价低廉的碳泡沫结构材料;与环氧树脂混合后,在保持基体环氧树脂机械强度高、加工性优良优点的同时,利用该碳泡沫结构作为导热填料,得到了导热性能较好的导热复合材料。本方法还可以对高温碳化后得到的三维网络结构碳泡沫进行压缩处理,提高碳泡沫的密度,得到导热性能更好的材料。本发明制备方法成本低、工艺流程简单易行,所得复合材料的导热系数为0.49~0.71W/(m·K),拉伸强度为28.81~53.91MPa、弹性模量为97.2~241.2MPa,具有优良的力学性能。
中冶有色为您提供最新的河南有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!