本发明涉及一种锂离子电池用锰系镍钴锰酸锂三元材料的制备方法。锰系镍钴锰酸锂三元材料的化学式为LiNixMnyCo1-x-yO2,其中x=0.1~0.5,y=0.1~0.6,1-x-y≥0。用本发明方法制备的锂离子电池用锰系镍钴锰酸锂三元材料,通过提高镍钴锰三元前驱体材料的密度提高了最终产品的体积比容量,通过复合包覆提升了镍钴锰酸锂的高温性能,有效解决了镍钴锰酸锂高温循环性能不好、储存性能差的问题。实现了振实密度高、比容量大、循环性能好、品质稳定、成本低、制备工艺简单、易于实现产业化。
本发明公开了一种添加锂锡合金粉末的硫化锂系固体电解质材料及其制备方法。所述的制备方法包括以下步骤:1)在气氛保护条件下,按2.5?4.0:0.5?1.0:0.02?0.1:0.01?0.05的摩尔比称取硫化锂、硫化磷、锂锡合金粉末和硫磺,混合均匀,得到非晶态的锂硫磷锡混合物;2)所得非晶态的锂硫磷锡混合物在气氛保护下密封,之后于真空或气氛保护条件下升温至120?260℃进行热处理,即得。本发明通过添加含锂量高且容易形成非晶态的锂锡合金粉末来提升硫化锂系固体电解质中可迁移的锂离子浓度,从而提升锂离子传导率。
本发明公开了一种锂离子电池锂钛氧化物负极材料及制备方法,原料包括Li2CO3、TiO2、碳源,负极材料的制作步骤为:将原料置于研钵中加适量无水乙醇研磨2.5小时;混合均匀后在85℃温度下干燥,干燥后用分样筛进行过筛;将过筛后混合物置于马弗炉中在空气气氛中加热到700℃预烧5小时,然后升温到850℃空气气氛中烧结保温24小时,自然冷却至室温;将混合物粉碎,研磨,用分样筛进行过筛,置于干燥处,完成负极材料制备。对锂钛氧化物进行碳掺杂,有效改善了锂钛氧化物负极材料的电化学性能,循环性能得到了改善,充放电效率高,容量保持率有较大的提高。
本发明涉及一种还原焙烧‑水淬法回收废旧锂离子电池中锂的方法,属于废旧电池回收技术领域。本发明包括以下步骤:将废旧锂离子电池进行放电后再经过机械破碎筛分得到正极废料粉;将正极废料粉与还原剂均匀混合,得到混合物;将混合物进行还原焙烧;将还原焙烧后的混合物迅速投入水中进行水淬,混合物中锂进入水中得到富锂溶液,废旧锂离子电池中锂的回收率为92%‑98%。本发明可实现废旧锂离子电池中锂的高效、选择性分离,工艺流程简单、操作方便,解决了以往工艺过程复杂、投资费用大、回收成本高等问题。
本发明公开了一种锂离子电池用尖晶石型掺杂锂锰氧化物的制备方法,它是将锂盐、硝 酸锰和含掺杂元素的硝酸盐放入有机酸与有机溶剂溶解形成的透明溶液中螯合,螯合物经干 燥、烧结而成,用作充电电池的正极材料,本发明的积极效果是:用该方法制成的产品,不 仅能够保持较好的尖晶石结构,有效的防止放电过程中相结构的变化,保持较高的充放电和 循环性能,而且还可以在制备的过程中降低约25%的能耗,节约15%~30%的成本。本产品 首次充放电量可达到122.6mAh·g-1,经过30个循环以后放电量还保持在113.1mAh·g-1,容量 保持率可达91.3%,可广泛应用于扣式、方形、圆柱形锂离子电池具有非常广阔的工业化前 景。
本发明公开了一种改性锂离子电池正极材料镍锰酸锂的制备工艺,将锰盐、镍盐材料混合通过溶胶凝胶法制备镍锰前驱体,镍锰前驱体、锂盐、再掺杂F-或F-与金属阳离子,采用三维斜式混合机混合,经过预烧结、高温烧结,加入金属氧化物进行混合包覆,最后经低温烧结、气流粉碎和分级获得镍锰酸锂成品。本发明能有效的改善电池正极材料镍锰酸锂的高温性能、电化学循环性能和放电比容量。
本发明公开了一种从黏土型锂矿中提取锂的方法,涉及锂矿加工领域,包括研磨、焙烧、反应、混合、调节酸碱值、蒸发和干燥,且提取锂的方法步骤具体如下:步骤一:获取锂黏土,然后将锂黏土加入至混合容器内部,并往混合容器中加入碱、熔出剂进行混合;本发明通过设置有步骤六,将步骤三获得废渣重新在高温条件下进行焙烧,得到熟料,然后再将该熟料置于水中,经过滤分离后得到反应液,并再通过步骤四和步骤五的方式得到沉淀物和碳分母液,从而可提高对废渣中熟料的提取效率,防止废渣中夹杂的熟料一起被排出从而造成熟料资源浪费,并使得该部分熟料中的锂资源难以在后续步骤中被提起出来,继而提高了锂资源的提取效率。
一种锂电池专用纳米钛酸锂复合材料,包括:二氧化钛、铝盐、碳源、锂盐、镁盐,其中钛、铝、镁、锂、碳元素的摩尔比为5∶(0.05~0.3)∶(0.1~0.4)∶(4.95~4.7)∶(2~20)。
本发明涉及无机盐化工领域,公开了一种高锂盐湖卤水提取氯化锂的方法。本发明在盐湖卤水中加入无机盐除去钙镁离子和硼离子,通过加入螯合剂除去微量的钙镁离子,通过喷雾干燥处理得到氯化锂固体颗粒。本发明采用无机酸碱除杂,降低了生产成本,减少了工业污染;通过喷雾干燥处理得到的氯化锂产品粒径均匀、团聚少、纯度高。
本发明涉及一种锂离子电池用掺杂锰酸锂正极材料及制备方法。本发明的技术方案是:一种锂离子电池用掺杂锰酸锂正极材料,其化学式为Mn1-1.2Li1-1.05Ni0-0.5Al0-0.2,其中,镍和铝不同时为零。本发明掺杂锰酸锂正极材料由硫酸锰、碳酸锂、硫酸镍和硫酸铝按摩尔比为:1~1.2∶1~1.05∶0~0.5∶0~0.1的比例混合,其中,硫酸镍和硫酸铝不同时为零;然后按程序升温和程序降温的方法制备。本发明提供了一种既能够改善锰酸锂正极材料的循环功能,又能够保持或提高原有放电容量的掺杂锰酸锂粉体材料。
本发明提供了一种添加锂硅合金、碘化银和氯化银的硫化锂系固体电解质材料及其制备方法。所述的制备方法,包括以下步骤:1)在气氛保护条件下,按2.5?3.5:0.5?1.0:0.05?0.20:0.01?0.1的摩尔比称取硫化锂、硫化磷、锂硅合金粉末和硫磺,混合均匀,得到锂硫磷硅混合物;2)在气氛保护及安全红光条件下,取锂硫磷硅混合物、碘化银和氯化银,置于球磨罐中球磨,得到含碘化银和氯化银的非晶态锂硫磷硅混合物;3)步骤2)所得混合物在气氛保护条件下密封,之后于真空条件下升温至100?180℃进行热处理,即得。本发明通过同时添加锂硅合金、碘化银和氯化银以提升所得固体电解质材料的锂离子传导率。
本发明公开了一种含补锂剂的磷酸铁锂复合材料及其制备方法、应用和含其的电池。该含补锂剂的磷酸铁锂复合材料的制备方法,包括如下步骤:S1.将锂源、磷源、铁源、碳源、补锂剂和溶剂混合,制备成磷酸铁锂浆料;所述补锂剂的D50为0.15μm‑0.65μm;所述磷酸铁锂浆料中固体颗粒的D50为0.30μm‑1.70μm;S2.将所述磷酸铁锂浆料经过干燥得到磷酸铁锂前驱体;S3.将所述含补锂剂的磷酸铁锂前驱体通过烧结得到磷酸铁锂复合材料前驱体,所述烧结的温度为500℃‑800℃。本发明将补锂剂均匀的分散在磷酸铁锂材料中,所得到的磷酸铁锂复合材料的首效和循环保持率得到明显提高。
本发明公开了一种多孔立方体锂电池正极材料镍锰酸锂及其制备方法。所述的制备方法包括:在水中加入草酸、锂源、镍源和锰源,搅拌溶解,然后向其中加入可溶性淀粉,搅拌均匀,得到混合溶液;所得混合溶液于75‑95℃条件下除去水分,之后置于真空条件下干燥,得到前驱体;所得前驱体在含氧气氛中于700‑800℃条件下煅烧,即得到多孔立方体锂电池正极材料镍锰酸锂;其中:所述草酸的加入量为控制草酸根的摩尔量为镍源中镍元素和锰源中锰元素的总摩尔量的1.5‑2.0倍;所述可溶性淀粉在体系中的浓度为15‑20wt%。按本发明所述方法制得的镍锰酸锂具有优异的循环稳定性,特别是具有优异高倍率性能,且制备工艺简单易行。
本发明提供一种空心镍锰酸锂结构掺杂锂离子电池正极材料的制备方法,包括以下几个步骤:1、碳球的制备;2、掺镁空心镍锰酸锂的制备;3、掺杂镁空心结构的镍锰酸锂包覆的制备。本发明使得电池的循环寿命得到了大大的提升,并且循环效率保持在90%左右。
本发明公开了一种氟化锂改性纳米硅锂离子电池负极材料及其制备方法和应用,利用氟化锂溶液浸泡纳米硅,经过刻蚀,实现对纳米硅提前嵌锂,并在纳米硅表面形成一层氟化锂包覆层,减缓纳米硅在充放电过程中因体积膨胀导致的SEI膜破碎重组及其对锂源的消耗,提高锂离子电池硅基负极的循环稳定性,再通过凝胶包覆碳化,实现在纳米硅外层包覆一层碳层来缓解纳米硅在充放电过程的体积膨胀,提高硅基负极材料的使用寿命。
本发明适用于锂离子电池领域,公开了电池正极片、锂离子电池、层状镍锰酸锂的制备方法以及层状镍锰酸锂,其中,电池正极片包括正极金属基片和涂覆于所述正极金属基片外的正极涂层,所述正极涂层的组分包括正极活性物质、正极粘结剂、正极导电剂,所述正极活性物质为层状镍锰酸锂LiNixMnyO2,其中x=0.6~0.8,y=1‑x。本发明采用层状镍锰酸锂LiNixMnyO2(其中x=0.6~0.8,y=1‑x)作为正极活性物质,提高了正极活性物质的热稳定性和加工性能,降低了电池正极片的成本。采用本发明的电池正极片制成的锂离子电池,具有成本低、比能量高、材料稳定性高、安全性能好、循环性能好、性价比高的优点。
本发明属于锂电池回收利用技术领域,具体涉及一种废旧锂电池黑粉加压焙烧固氟提锂的方法,主要步骤包括(1)将废旧锂电池拆解得到黑粉,向黑粉中添加固氟剂,混均后进行加压焙烧,得到熟料粉;(2)向熟料粉中加入水搅拌均匀制成浆料,然后向浆料中通入二氧化碳气体进行反应,经固液分离得到含锂溶液;(3)将含锂溶液加热分解后得到高纯度的碳酸锂。本发明具有可高效提取回收废旧锂电池材料中镍钴锰酸锂、氟化锂、磷酸锂、六氟磷酸锂等多种类型锂金属,同时实现固化杂质氟的技术特点,有效地解决不同锂电池类型中锂结合形式各异、回收率低、氟杂质含量高和锂产品品质低的技术难题。
本发明提供了一种添加锂硅合金、碘化银和溴化银的硫化锂系固体电解质材料及其制备方法。所述的制备方法,包括以下步骤:1)在气氛保护条件下,按2.5?3.5:0.5?1.0:0.05?0.20:0.01?0.1的摩尔比称取硫化锂、硫化磷、锂硅合金粉末和硫磺,混合均匀,得到锂硫磷硅混合物;2)在气氛保护及安全红光条件下,取锂硫磷硅混合物、碘化银和溴化银,置于球磨罐中球磨,得到含碘化银和溴化银的非晶态锂硫磷硅混合物;3)步骤2)所得混合物在气氛保护条件下密封,之后于真空条件下升温至100?180℃进行热处理,即得。本发明通过同时添加锂硅合金、碘化银和溴化银以提升所得固体电解质材料的锂离子传导率。
本发明公开了一种多孔空心球形锂离子电池正极材料碳包覆磷酸钒锂及其制备方法,该正极材料的制备方法为:取粘结剂、锂源、钒源和磷源置于水中,搅拌溶解,所得混合液进行喷雾干燥,得到前驱体;所得前驱体与碳源混合,在保护气氛条件下煅烧,即得;其中:粘结剂在水中的浓度为0.3‑0.5wt%;锂源中锂元素在水中的浓度为0.1‑1mol/L;钒源中钒元素在水中的浓度为0.06‑0.6mol/L;磷源中磷元素在水中的浓度为0.09‑0.9mol/L;碳源的加入量为前驱体的4‑20wt%。采用本发明所述方法制得的正极材料呈多孔空心球形形貌,具有较高的比表面积,能够有效改善所得产品的循环倍率性能。
本发明公开一种具有电量耗尽预警功能的磷酸铁锂锂离子电池,包括正极材料、负极材料、导电剂、粘结剂、正极片、负极片、隔膜、电解液和壳体,所述正极材料是以磷酸铁锂为主的正极活性物质以及钒酸锂为预警功能的辅助正极活性物质,其中磷酸铁锂的重量比含量是50%-80%,钒酸锂的重量比含量是15%-45%;本发明电池比现有的磷酸铁锂离子电池多一个电量耗尽预警的电压平台,该电压平台比现有的磷酸铁锂锂离子电池的放电平台低,当放电电压到达该预警平台时,就可以在无需软件支持的情况下,通过更简单可靠的电子电路测量特征的预警平台电压,准确提供电量耗尽预警,而且能在预警后仍剩下一定的容量供应急使用。
本发明的锆、钡参杂磷酸铁锂纳米正极材料及其制备方法,其锂源、铁源、磷酸根源、锆源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Zr∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在5-120℃密封搅拌反应器中,反应0.5-24小时,过滤、洗涤、烘干后得到纳米前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧16-24h,即得本发明的参杂磷酸铁锂纳米粉末正极材料,其粉末粒度在30-85nm范围,所得粉末正极材料,粒度在30-85nm范围,其首次放电容量大大提高,达160.21mAh/g以上,生产成本可降十倍以上。
本发明适用于化学电源技术领域,提供了一种富锂锰基前驱体、正极材料制备方法,锂离子电池及其制备方法,将过渡金属盐的水溶液和改性化合物的水溶液混匀后与沉淀剂水溶液反应形成富锂锰基前驱体,通过溶剂热法对前躯体进行预处理,利用预置入的离子来构建颗粒内部的气体排出通道,方便前驱体转化为电极材料过程中的气体排出,同时有利于锂离子和掺杂离子进入颗粒内部,存在在表面的掺杂离子则在后续烧结过程中形核生长,提高烧结后产物的密实度,提高电极压实密度,进而提高电极循环过程的结构稳定性。本发明的富锂正极材料比容量高、压实密度高大,在循环过程中结构稳定。采用该正极材料制作的锂离子电池能量密度高,电压衰减小,安全性好。
本发明适用于化学电源技术领域,提供了一种类葡萄状富锂锰基阴极材料及其制作的锂离子电池,采用类葡萄状富锂锰基材料碳酸盐作为前驱体与锂源混合烧结的方式制备类葡萄状富锂锰基阴极材料,然后利用该阴极材料制作锂离子电池。前驱体是采用共沉淀反应制得,通过多次静置去除共沉淀过程中上层清液以提高溶液中固含量,该共沉淀反应以碳酸盐溶液作为沉淀剂;通过控制共沉淀反应过程中,混合盐的金属离子浓度、沉淀剂浓度、络合剂浓度、反应物混合速度、搅拌速度、反应pH值和反应温度。本发明的类葡萄状富锂阴极材料比容量高、库伦效率高、比表面积大,在循环过程中结构稳定。采用该阴极材料制作的锂离子电池能量密度高,电压区间宽,安全性好。
本发明公开一种锂电池正极材料锰酸锂用电解二氧化锰的生产方法,它是按照如下步骤进行:(1)将氧化锰矿粉与硫铁矿粉混合后与硫酸按一定的物料比投入连续搅拌的浸出槽中,过程反应温度控制在85-90℃,反应时间3-4h,得硫酸锰溶液;(2)除钾;(3)净化除杂;(4)电解;(5)溶解;(6)高温煅烧,即得到电解二氧化锰产品。本发明制得的电解二氧化锰晶型单一,具有纯β型结构,更有利于锂的嵌入与脱嵌;杂质含量极低,制得的锰酸锂能够表现出优良的电性能和安全性能。
本发明提供了一种用于制备薄膜锂电池的锰酸锂正极靶材及其制备方法。制备方法包括:预混步骤、球磨步骤、过筛步骤、压制步骤、烧结步骤以及冷却步骤。本发明的锰酸锂正极靶材及其制备方法,能够专门适用于采用磁控溅射镀膜方式制备全固态薄膜锂电池的方案,解决了采用磁控溅射镀膜方式制备全固态薄膜锂电池过程中所存在的“无可用的合适靶材”问题。基于本发明所制备的锰酸锂正极靶材以及磁控溅射镀膜技术,制得的全固态薄膜锂电池的接触面电阻明显降低,显著提高了电池的性能。
本发明公开了一种添加锂锡合金和氯化银的硫化锂系固体电解质材料及其制备方法。所述的制备方法包括以下步骤:1)在气氛保护条件下,按2.5‑4.0:0.5‑1.0:0.02‑0.1:0.01‑0.05的摩尔比称取硫化锂、硫化磷、锂锡合金粉末和硫磺,混合均匀,得到锂硫磷锡混合物;2)在气氛保护及安全红光条件下,取锂硫磷锡混合物及相当于其质量1‑5%的氯化银,置于球磨罐中球磨,得到含氯化银的非晶态锂硫磷锡混合物;3)所得含氯化银的非晶态锂硫磷锡混合物在气氛保护条件下密封,之后于真空条件下升温至80‑150℃进行热处理,即得。本发明通过同时添加锂锡合金和氯化银以提升所得固体电解质材料的锂离子传导率。
本发明提供了一种添加锂硅合金和碘化银的硫化锂系固体电解质材料及其制备方法。所述的制备方法,包括以下步骤:1)在气氛保护条件下,按2.5?3.5:0.5?1.0:0.05?0.20:0.01?0.1的摩尔比称取硫化锂、硫化磷、锂硅合金粉末和硫磺,混合均匀,得到锂硫磷硅混合物;2)在气氛保护及安全红光条件下,取锂硫磷硅混合物及相当于其质量1?5%的碘化银,置于球磨罐中球磨,得到含碘化银的非晶态锂硫磷硅混合物;3)所得含碘化银的非晶态锂硫磷硅混合物在气氛保护条件下密封,之后于真空条件下升温至120?200℃进行热处理,即得。本发明通过同时添加锂硅合金及碘化银以提升所得固体电解质材料的锂离子传导率。
一种高纯锂离子电池正极材料锰酸锂的制备方法,将强力除铁后的金属锰粉加入到铵盐溶液体系中,反应得到锰化合物料浆,加入锂盐和添加剂,搅拌均匀后经喷雾干燥得锂、锰混合的粉末,将该粉末烧结、冷却,研磨、过筛得产品。本发明的方法工艺简单,易于控制,所得锰酸锂产品均匀性好,纯度高,性能优良,有效改善了锰酸锂电池的高温性能和循环性能,而且生产无环境污染,适用于产业化。
本发明提供了一种添加锂硅合金和氯化银的硫化锂系固体电解质材料及其制备方法。所述的制备方法,包括以下步骤:1)在气氛保护条件下,按2.5?3.5:0.5?1.0:0.05?0.20:0.01?0.1的摩尔比称取硫化锂、硫化磷、锂硅合金粉末和硫磺,混合均匀,得到锂硫磷硅混合物;2)在气氛保护及安全红光条件下,取锂硫磷硅混合物及相当于其质量1?5%的氯化银,置于球磨罐中球磨,得到含氯化银的非晶态锂硫磷硅混合物;3)所得含氯化银的非晶态锂硫磷硅混合物在气氛保护条件下密封,之后于真空条件下升温至100?180℃进行热处理,即得。本发明通过同时添加锂硅合金及氯化银以提升所得固体电解质材料的锂离子传导率。
本发明公开了一种改性锂离子电池正极材料镍锰酸锂的制备方法,将锰盐、镍盐材料混合通过溶胶凝胶法制备镍锰前驱体,镍锰前驱体与锂盐采用三维斜式混合机混合,经过预烧结、高温烧结,再掺杂F-或F-与金属阳离子,然后加入金属氧化物进行湿法包覆,最后经低温烧结、气流粉碎和分级获得镍锰酸锂成品。本发明利用离子掺杂改性技术改善了镍锰酸锂的循环性能及高温稳定性,利用湿法包覆技术提高了镍锰酸锂的高压循环性能及高温稳定性。
中冶有色为您提供最新的广西有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!