本实用新型公开了一种设有余热回收的锂电池材料烧成辊道窑,涉及热处理设备领域,提供一种难以产生振动、热电转换元件难以暴露于炉内的气体中,并且可以回收废热的锂电池材料烧成辊道窑,以及提供配备该锂电池材料烧成辊道窑的热处理设备,现提出如下方案,其包括热处理设备,其特征在于,所述热处理设备上配备有热处理炉,所述热处理炉包括辊道窑、排气处理炉、隧道窑和回转窑。本实用新型结构新颖,非常适用于高温加热的锂电池材料烧成辊道窑,在进行热处理的同时,将废热作为电力进行回收,另外,热电转换元件难以产生振动,可保护热电转换元件不暴露于燃烧室的气体中。
本发明公开了一种从废旧磷酸铁锂材料回收锂的方法,包括以下步骤:S1.将废旧磷酸铁锂材料中加水制成浆料,控制浆料的pH=0.5~2.0,控制浆料的氧化还原电位为0.05~1.2V,过滤取滤渣,得物料A;S2.在所述物料A中加入硫酸,在空气或者氧气的氛围中加热,所述加热的温度为100~400℃,得物料B;S3.在所述物料B中加入水,搅拌,过滤取滤液,得物料C;S4.控制所述物料C的pH=9~11,过滤取滤液,得物料D;S5.使所述物料D通过离子交换树脂,得物料E;S6.在所述物料E中加到碳酸钠溶液中,取反应后固体,得碳酸锂。本发明所述方法可以使回收的锂为电池级,回收率达到99%以上。
本发明提供了一种磷酸铁锂正极材料的制备方法,包括:(1)将第一锂源、磷源、铁源和第一碳源加入至含有络合剂的第一溶剂中,得到混合溶液,于400‑450℃的温度下搅拌均匀后,经干燥、破碎处理后,得到前驱体①;(2)将磷酸铁颗粒和第二锂源按摩尔比1:(1.03‑1.1)的均匀混合后,然后加入第二碳源、第二溶剂和掺杂金属盐,经充分混合后,研磨3‑8小时,经干燥、破碎处理后,得到前驱体②;(3)将前驱体①和前驱体②按1:(0.5‑3)的质量比混合均匀,得到混合前驱体;然后在惰性或者还原性气氛下高温烧结,得到磷酸亚铁锂粗品;(4)在气流磨中对所述磷酸亚铁锂粗品进行粉碎和烘干,然后收集得到磷酸铁锂正极材料。本发明还提供了一种锂离子电池。
本发明公开了一种磷酸锰铁锂复合正极材料及其制备方法和锂离子电池。所述方法包括以下步骤:将制备原料混合,研磨后一次烧结,一次烧结后依次进行氧化物包覆和导电材料包覆,得到磷酸锰铁锂;其中,制备原料包括磷源、锂源、铁源和锰源,铁源为磷酸亚铁,锰源为磷酸亚锰,不包括碳源。本发明省去了还原过程,减少制备过程因Mn和Fe还原造成的结构缺陷。同时,制备不含碳的磷酸锰铁锂内核材料,进一步减少材料制备过程中产生的结构缺陷,有利于提高材料的结构稳定性,通过依次在磷酸锰铁锂表面包覆氧化物和导电层,可以在保证材料良好的稳定性的前提下提升导电性能,有效防止充放电过程中电解液对正极材料表面的腐蚀,提升材料的稳定性。
本发明公开了一种锂离子电池预锂化剂及其制备方法和应用,所述锂离子电池预锂化剂的化学式为Li5FeO4@C,其结构是由Li5FeO4一次颗粒团聚成的二次颗粒,且碳包覆于Li5FeO4一次颗粒的表面。本发明通过碳源与Fe的可溶性盐混合,使Fe离子附着在碳源上,加入氨水后可形成颗粒小分散性好的氢氧化物,进而通过溶剂热反应得到纳米级的氧化物,并且碳源还在后续烧结过程起到颗粒间的阻隔作用,减缓一次颗粒长大,避免长成大单晶颗粒,以此方法制备得到的预锂化剂一次颗粒较小,充电时Li+脱出路径更短,倍率性能好。该预锂化剂可以在电池首次充电时提供足够的Li+使负极表面生成SEI膜,降低正极材料中Li+的损失,提高锂离子电池的库伦效率和容量。
本发明涉及一种电池壳体、锂离子电池及锂离子电池组,所述的电池壳体包括外管体、内管体、第一盖板和第二盖板,所述内管体设于所述外管体内,所述第一盖板和所述第二盖板分别盖设于所述外管体的两端,所述第一盖板设有第一开口,所述第二盖板设有第二开口,所述内管体的一端与所述第一开口的周缘连接,另一端用于与所述第二开口的周缘连接,以使所述内管体的内部与外界连通形成散热通路,所述外管体、所述内管体、所述第一盖板和所述第二盖板共同围蔽形成用于容置电芯的容置腔,上述电池壳体的散热性能较好,可使大容量锂离子电池在充放电过程中能快速有效地散热,保证使用安全。
本发明公开了一种电动汽车用动力型锰酸锂电池中锰和锂的回收方法,包含以下步骤:1)将废旧锂离子电池放电后,拆解去掉外壳,得到正极部分;2)除去正极部分的有机粘合剂,得到动力型锰酸锂正极材料;3)在上步得到的无机材料中加入酸和还原剂,使其溶解并过滤除去不溶物乙炔黑,得滤液;4)以上步得到的滤液为电解液,钛片为工作电极,石墨棒为对电极,控制恒电流密度300-800A/m2,温度为60-80℃,进行电化学沉积5-8h,得到二氧化锰固体;5)调节上步余液的pH为9-10,过滤得到沉淀物和滤液;6)在上步得到的滤液中加入浓度为30-40wt%的碳酸钠溶液,直至沉淀完全,过滤,洗涤,干燥,得到碳酸锂固体。本发明利用电化学沉积法回收MnO2,绿色环保,同时回收了高纯度碳酸锂固体。
本发明涉及锂电池安全保护领域,具体涉及锂电芯抗静电压敏胶及制备方法及锂电芯抗静电保护膜。一种锂电芯抗静电压敏胶,包括10~50份的丙烯酸月桂酯、1~5份的4‑甲基丙烯酰氧基乙基偏苯三酸酐、20~70份丙烯酸‑2‑乙基己酯、1~10份的甲基丙烯酰氧乙基三甲基氯化铵、1~5份的丙烯腈、1~5份的丙烯酸四氢呋喃酯、0.001~0.5份的自由基引发剂过氧化二苯甲酰、0.001~1份的三氯化铁、0.01~2份的三苯基磷、50~200份的有机溶剂、0.2~3份的多官环氧树酯和0.01~1份的固化促进剂。本发明解决了传统丙烯酸酯压敏胶耐墨性能差的问题,消除低聚合物对油墨二维码的溶解。增强丙烯酸酯压敏胶的抗静电性能,消除贴合不良现象。
本发明涉及锂电池技术领域,公开了一种用于锂电池的复合隔膜的制备方法及使用其的锂电池,包括以下步骤:S1)制备预聚体;S2)制备含有单层包覆膜的微胶囊反应液;S3)制备含有双层包覆膜的微胶囊反应液;S4)制备含有三层包覆膜的微胶囊体;S5)制备所述用于锂电池的复合隔膜;采用微胶囊成型技术,将吸热相变材料(氟类衍生物,如全氟己酮或七氟环戊烷)包裹在尿素‑三聚氰胺‑甲醛聚合形成的有机薄膜胶囊体内,制得的复合隔膜含有的微胶囊相当于灭火剂,能瞬间吸收大量热量,具有优良的快速冷却性能;本发明提出的一种使用上述制备方法获得的复合隔膜制备的锂电池,制得的锂电池具有抑制热失控的功能。
本发明公开一种锂离子电池正极浆料,涉及电池技术领域。该正极浆料由以下重量百分比的组分组成:90‑95%活性物质,1‑4%粘结剂,1‑9%导电剂,30‑50%溶剂,所述活性物质为钴酸锂与锰酸锂和/或镍钴锰酸锂的混合物,所述混合物含有重量百分比为10‑90%的钴酸锂以及余量的锰酸锂和/或镍钴锰酸锂;所述粘结剂为聚偏氟乙烯,所述导电剂包括炭黑、纳米碳管、石墨烯、Super P Li中的一种或几种,所述溶剂为N‑甲基吡咯烷酮。本发明采用钴酸锂与和/或镍钴锰酸锂的混合物作为制备锂离子电池正极浆料的活性物质,制备的锂离子电池具有优异的高倍率放电性能,大电流点火性能更好,循环寿命、储存性能良好,同时制造成本低。
本发明属于锂离子电池领域,公开了一种锂离子电池隔膜的处理方法及锂离子电池。该处理方法包括以下步骤:在隔膜的两面均涂覆一层滑石粉、黄油和乙醇的混合物,然后烘干除去乙醇即得到处理后的锂离子电池隔膜。黄油与滑石粉混合在一起时,当外界加热时,滑石粉具有隔热功能,使黄油不易融化或软化,因此当电池处于高温时,黄油仍为固态,阻止隔膜收缩,提高电池安全性能。当滑石粉、黄油和乙醇的重量比为100:20‑40:50,涂覆量在10‑30g/m2时,锂离子电池在保证安全性能的同时也具有较好的电池容量。
本发明提供一种锂电池浆料连续化高效生产工艺,该工艺可将粘接剂直接加入连续生产线中,无需使用粘接剂预制胶液,提高了生产效率。本发明一种锂电池浆料连续化高效生产工艺的技术方案包括:首先,将主材、辅料和部分液体料在螺旋混合装置的筒体前段进行混合,所述筒体还包括中段和后段,所述前段、中段和后段依次设置;其次,在所述前段或中段可选择性的加入粘结剂;最后,在所述后段加入剩余液体料,所述后段设有出料口。
一种新型锂电池,包括电池壳体和置于电池壳体内的阳极、阴极和电解液,阳极与阴极之间有多孔的聚合物隔板,关键是阴极由锂化的过渡金属插层活性物质、纳米级膨润土和碳粉制备,阳极由碳质材料制备,阳极与阴极的厚度之比为1∶1~1∶3,所述的阴极中的锂化的过渡金属插层活性物质、纳米级膨润土和碳粉按重量分别为90~92%、0.5~1.5%和4~5%,余量为PVDF。本发明的有益效果是:按上述的结构制备的锂离子电池,由于阴极的厚度大幅降低,整个电池的厚度则可大幅降低。当阳极中亦加入微量的纳米级膨润土时,亦可提高阳极中锂离子的吸纳,并且充电时间可以大为减少,其减少的幅度视阳极和阴极的厚度的减小幅度而定。
本发明公开了一种磷酸铁锂基复合导体正极材料及其制备方法、锂电池正极和锂电池。该磷酸铁锂基复合导体正极材料是碳原位包覆磷酸铁锂复合导体正极材料,所述碳包含球形导电碳、片状导电碳、管状导电碳,且所述球形导电碳、片状导电碳、管状导电碳的质量比为(10-50):(10-50):(10-50)。其制备方法包括含锂源、铁源、磷源和有机碳源的混合溶液、制备含球形导电碳、片状导电碳、管状导电碳的混合溶液、将两种混合溶液混合后进行预热处理、球磨、干燥、煅烧处理等步骤。该锂电池正极、锂电池均含有该磷酸铁锂基复合导体正极材料。
本发明公开了一种预锂化包覆钴酸锂正极材料及其制备方法,其中制备方法包括以下步骤:(1)将钴酸锂加入到无水乙醇中,混合;(2)将四氯化锡、氢氧化锂加入到步骤(1)的混合液中,并加入碳源混合;(3)将步骤(2)得到的混合液蒸干;(4)将步骤(3)中蒸干后的物料在含氧气氛中煅烧,冷却后,洗涤,烘干即得。该方法制备得到的正极材料具有优异的导电性能和循环性能。
本发明属于锂电池新能源材料技术领域,提供一种利用废磷酸铁锂正极粉提锂渣制备磷酸铁的方法和应用,通过酸液溶解废磷酸铁锂正极粉提锂渣得酸性铁磷溶液、升温酸性铁磷溶液、搅拌升温后的酸性铁磷溶液析出磷酸铁沉淀、进一步处理所述的磷酸铁沉淀,得到磷酸铁成品,该方法能耗低,成本低,操作简单,实现了磷酸铁锂电池废正极材料的资源化利用,所制得的磷酸铁可用作磷酸铁锂正极材料制备的原料,也可用作制造陶瓷、涂料等。
本发明公开了一种从高钙锂比盐湖卤水中除钙富集锂的方法,包括以下步骤:(1)将氯化钙型盐湖含锂原卤水进行自然蒸发析出钾、钠混盐,然后对卤水进行酸化除硼;(2)将步骤(1)处理后的卤水至少经过1次自然蒸发‑冷冻析钙操作,其中冷冻析钙操作为对卤水进行降温,使其析出氯化钙结晶,然后进行固液分离,得到富集锂浓缩卤水。该方法具有工艺简单、操作简便,钙锂分离效率高,能源、水、化学试剂消耗量少的特点,尤其适用于基础设施差、能源供应不充足地区的高钙锂比的盐湖卤水提锂,对盐湖锂资源利用具有现实意义。
本发明涉及锂电池技术领域,公开了一种含有微胶囊体的安全锂电池电解液的制备方法及其锂电池,包括以下步骤:S1)制备水溶性的脲醛树脂预聚体;S2)制备含有包裹膜的微胶囊;S3)制备微胶囊体;S4)制备所述含有微胶囊体的安全锂电池电解液;所述含有微胶囊体的安全锂电池电解液,工艺简单高效,实用性强,电解液的替换成本低,适合锂电池的大规模生产;本发明提出的一种使用上述制备方法制得的电解液制备的锂电池,使用所述含有微胶囊体的安全锂电池电解液的锂电池,在热失控时,可有效抑制锂电池内部的安全隐患。
本发明提出了一种锂离子电池隔膜用的涂覆浆料、锂离子电池隔膜及其制备方法,按照重量百分数计算,包括以下组分:水溶性纤维素0.01~5%、无机陶瓷颗粒12~60%、两性分散剂0.5~4%、表面活性剂0.01~1%、两性胶黏剂1~10%及去离子水35~80%。锂离子电池隔膜:包括聚烯烃微孔膜和上述的锂离子电池隔膜用的涂覆浆料,所述涂覆浆料涂覆在所述聚烯烃微孔膜上面。该涂覆浆料涂覆在锂离子电池隔膜上面达到不吸水及水分含量达标的目的,对于该涂覆产品的运输、包装、存储不需要控制极低的湿度。
本发明提供的一种复合锂离子电池隔膜及其制备方法和锂离子电池、电子产品,复合锂离子电池隔膜具体制备方法为:分别制备含有改性芳纶纤维的浆料和含有改性无机纳米颗粒的浆料,其中,含有改性芳纶纤维的浆料中的芳纶纤维表面接枝有第一有机改性基团,含有改性无机纳米颗粒的浆料中无机纳米颗粒表面接枝有第二有机改性基团;混合含有改性芳纶纤维的浆料、含有改性无机纳米颗粒的浆料、第一溶剂和成膜助剂,制备混合浆料;将混合浆料涂覆在基膜的一侧或两侧,制备涂覆隔膜;将涂覆隔膜进行固化处理,使第一有机改性基团与第二有机改性基团共价结合或通过分子间相互作用力连接。利用上述制备方法可提高复合锂离子电池隔膜的均匀性和粘结性,还可以提高应用此复合隔膜的锂离子电池电化学性能。
本发明公开了一种含锂废水综合回收制取磷酸铁锂的方法,包括以下步骤:(1)向含锂废水中加入可溶性镁盐,固液分离,得到滤液A,加碱后,固液分离得到固体渣和滤液B;(2)向滤液B中加入可溶性磷酸盐后,加酸,进行芬顿反应,絮凝后,固液分离得到含锂磷铁渣和滤液C;(3)将固体渣氨浸后固液分离,得到滤液D,将滤液D与含锂磷铁渣混合,补加锂源和磷源后得到混合料,将混合料进行水热反应,干燥,烧结得到磷酸铁锂成品。该方法能最大程度的回收含锂废水中的锂,并制备高价值的附加品。
本发明提供了一种磷酸铁锂正极材料,所述磷酸铁锂正极材料包括由多个阵列排布的柱形磷酸铁锂构成的磷酸铁锂阵列,以及分布在所述磷酸铁锂阵列中的颗粒状磷酸铁锂;其中,所述磷酸铁锂阵列中,相邻的两个所述柱形磷酸铁锂之间具有间隙,所述间隙之间填充有所述颗粒状磷酸铁锂。这样特定形貌的磷酸铁锂正极材料能具有较高的压实密度以及锂离子电导率。本发明还提供了磷酸铁锂正极材料的制备方法和锂离子电池。
本发明提供了一种磷酸铁锂复合材料,包括磷酸铁锂和非连续地包覆在磷酸铁锂表面的石墨烯,磷酸铁锂复合材料的粒径为35nm‑10μm,振实密度为1.01‑1.05g/cm3。本发明还提供了一种磷酸铁锂复合材料的制备方法,包括:将磷酸铁锂或磷酸铁锂前驱体以5‑30℃/min的速率升温至500‑800℃进行第一次烧结,烧结时间为10‑24h;烧结结束后,冷却至室温;将第一次烧结后的材料以2‑20℃/min的速率升温至500‑800℃进行第二次烧结,升温过程中通入含氧有机物和水汽,在材料表面非连续地包覆石墨烯,烧结时间为6‑18h;烧结结束后,冷却至室温,得到磷酸铁锂复合材料。所述制备方法工艺简单。
本发明公开了一种从锂黏土中回收锂的方法,将锂黏土粉料进行第一次焙烧,将一次焙烧料与添加剂混合后进行研磨,得到研磨料,将研磨料与酸混合后进行第二次焙烧,二次焙烧料加入浸出剂进行浸出,得到浸出液。本发明基于一次焙烧、高能研磨和二次酸化焙烧的方式实现锂黏土的锂提取,先通过一次焙烧脱除黏土矿中的结构羟基,致使黏土矿晶格间距增大,有利于锂离子的脱嵌和交换;再通过高能研磨进一步破坏黏土矿的结构,使得Na+/K+同黏土矿中的Li+发生离子交换;再通过二次酸化焙烧将脱离的锂转化为易溶解的锂盐,同时酸在焙烧过程中用于深度提取黏土矿中的锂,该工艺适用于低品位锂黏土锂的浸出。
本发明公开了一种磷酸铁锂电池废液提锂用搅拌机构,包括基座、装夹机构和搅拌机构;所述装夹机构活动连接在基座的底部;所述搅拌机构转动设置于基座和装夹机构之间;所述搅拌机构包括电机、转动件和搅拌件;所述转动件转动设置在装夹机构的固定部中央,且转动件呈倾斜状设置;所述搅拌件可拆卸连接于转动件的底部;所述搅拌件包括依次连接的连接座、分离斗和搅拌轮。本发明通过采用倾斜设置的转动件,使转动件和搅拌件旋转过程中会与容器中轴线产生一定的角度,进而扩大搅拌件的旋转搅拌范围,加速磷酸铁锂电池废液以及化学制剂之间的融合,以便混合溶液快速发生反应,使磷酸铁锂电池废液中的其它金属元素可以快速析出结团。
本发明公开了一种从磷酸铁锂废料选择性提锂的方法,该方法包括以下步骤:磷酸铁锂废料加水制浆,再加入酸,加热升温至40‑100℃,调节体系pH值至2‑4,维持该温度和pH值范围,反应1‑10h,将反应后的浆料过滤分离,得到锂溶液和磷铁渣;所述的酸为浓盐酸、浓硫酸或浓硝酸中的一种。采用本发明的方法回收废旧磷酸铁锂材料中的锂,锂回收率高达98%以上,进一步制得的碳酸锂纯度达99.0%以上。本发明工艺简单,能耗成本低廉,实现废旧磷酸铁锂材料中锂的选择性提取,产品价值高,具有可观的经济效益,有利于促进磷酸铁锂废旧电池的回收发展。
本发明公开了一种从废旧锂离子电池中回收、制备钴酸锂的方法。其主要特点是:将废旧锂离子电池拆解去掉外壳,挑出正极材料为纯钴酸锂的正极片;将该正极片粉碎、筛分后,获得主要成份为废钴酸锂的筛下物;接着在恒温电阻炉中,高温除去筛下物中的粘结剂与导电剂乙炔黑,然后采用氢氧化钠除铝后,过滤、洗涤与烘干,得到杂质含量低的失活钴酸锂;检测该失活钴酸锂中锂、钴含量后,配入适当比例的碳酸锂,于马弗炉中高温烧结合成具有活性的钴酸锂电池材料。应用该方法可使废旧锂离子电池中钴的回收率大于95.0%,锂的回收率大于97.0%。
本发明公开了一种改性钴酸锂正极材料及其制备方法与锂离子电池,属于电池技术领域。该改性钴酸锂正极材料中掺杂有钨和铒;钨的掺杂浓度由改性钴酸锂正极材料的内部至外部逐渐递减,铒的掺杂浓度由改性钴酸锂正极材料的内部至外部逐渐递增。该改性钴酸锂正极材料具有良好结构稳定性和循环性能。其对应的制备方法简单,易操作,适于工业化制备。将上述改性钴酸锂正极材料制备锂离子电池,有利于提高锂离子电池的性能。
本发明提供锂过渡金属氧化物消除残锂的方法及其应用。该方法包括以下步骤:将吸锂剂覆于锂过渡金属氧化物,热处理形成非晶态表面层;非晶态表面层经晶化处理转化为晶态表面层;吸锂剂包括非晶态物质。该方法至少具有如下有益效果:非晶态物质覆于锂过渡金属氧化物后,在热处理条件下具有很强的结合残锂的倾向,能够大幅降低材料表面的残锂含量,同时通过吸收表面残锂避免锂损失导致容量的下降。随后,由非晶态向晶态转变,使晶格更加完整,避免因非晶态长程无序的亚稳态在向晶态转化过程中的能量释放导致材料表面结构的损坏,以及由此带来的电池衰减问题,有效保证材料的电化学性能不因消除表面残锂而导致下降。
本发明公开了一种以废旧锂电池为原料逆向回收制备镍锰酸锂的工艺,其特征在于,包括以下步骤:(1)取废旧锂离子电池的电池正极片进行预处理获得正极粉;(2)将所述正极粉溶于无机酸中,除杂,得到含有镍和锰的混合酸液;(3)往所述混合溶液中加入镍源或锰源;(4)加入醋酸盐络合剂,调整醋酸盐浓度与金属离子总浓度的比例;(5)将混合溶液置于电解槽中进行电解,使镍锰氧化物沉积在钛片上;(6)停止通入直流电,取出钛片,分离钛片上的镍锰氧化物,干燥,得到镍锰氧化物粉末;(7)镍锰氧化物粉末与锂源混合均匀,然后进行煅烧处理,得到镍锰酸锂。该工艺能将废弃电池通过逆向回收工艺,得到与原产品性能相同的再生产品,实现资源化利用。
中冶有色为您提供最新的广东佛山有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!