一种3R‑MoS2/碳布复合材料的制备方法及其应用,它是要解决现有的水热合成的MoS2纳米片制备过程复杂,对U(VI)的吸附量低、不容易回收的技术问题,本方法:一、将KCl、NaCl、钼盐和硫盐加热熔融,并加入碳布;二、以金属钼为工作电极,钼丝为辅助电极进行恒电流电解,然后将碳布取出,洗涤、烘干,得到3R‑MoS2/碳布复合材料。该复合材料可作为吸附剂、电解水制氢的催化剂或光催化的催化剂。作为吸附剂去除水中U(VI)时,吸吸咐量为170~190mg/g,吸咐平衡时间仅为1分钟,可应用于电解水制氢、吸附和光催化领域。
本发明公开了一种Fe2O3-HNTs环氧树脂复合材料,其制备方法包括以下步骤:(1)将Fe2O3-HNTs杂化材料加入无水乙醇和去离子水的混合溶液超声分散,然后加入KH560超声分散,再将混合溶液移入三口烧瓶,80℃回流,用甲醇除去未反应的KH560硅烷偶联剂,最后用滤膜过滤、真空干燥后研细备用;(2)将固化剂和环氧树脂溶解于有机溶剂,将步骤(1)处理后的Fe2O3-HNTs粉体与其混合,搅拌混匀后超声分散,再在常温下放置、110℃烘烤、220℃烘烤,得Fe2O3-HNTs环氧树脂复合材料。该方法制备出的Fe2O3-HNTs环氧树脂复合材料具有很强的韧性和耐磨性。
本发明涉及一种四氧化三钴/石墨烯复合材料(Co3O4/N?RGO)的制备方法及其在镍氢电池及锂离子电池中的应用。该复合材料是按照以下步骤制备的:a、根据改进的Hummers方法制备氧化石墨;b、醋酸钴在氨水的调节作用下水解、氧化并在氧化石墨表面原位生长超小的Co3O4纳米粒子;c、Co3O4纳米粒子的进一步晶化和氧化石墨的还原。Co3O4/N?RGO复合材料作为电极材料,其独特的结构特性以及Co3O4与N?RGO之间的协同效应显著提高了镍氢电池和锂离子电池的高倍率放电性能。对于镍氢电池,在放电电流密度为3A/g时其放电容量高达223.1mAh/g,是商用储氢合金的3.2倍(68.7mAh/g)。对于锂离子电池,在电流密度为10A/g时仍保持较高的放电容量,为423.6mAh/g。本发明为研发高功率型电池提供了新的思路。
本发明公开了一种高抗热冲击W?TiC?Y2O3复合材料及其制备方法,其中高抗热冲击W?TiC?Y2O3复合材料的掺杂第二相为TiC与Y2O3,各组分按体积百分比构成为:TiC?10?14%,Y2O3?2?4%,余量为W。本发明烧结后的块体颗粒细化到亚微米级别,且第二相在晶界、晶内分布均匀,从而提高了硬度,硬度值为710?725Hv。同时,在TiC与Y2O3协同作用也使得材料的抗热冲击性能较纯钨有明显提高,在受到能量密度为1.0?1.2GW/m2的激光热冲击时,烧结后的复合材料较商业纯钨表面粗糙度较小,因热冲击诱导的裂纹数目更少、裂纹宽度更小,抗热冲击能力显著提高。
本发明涉及一种含金属内衬碳纤维复合材料的身管及其冷装配制造方法,身管包括金属内衬、金属尾管、金属端管和碳纤维复合材料层,金属尾管、金属端管分别衔接金属内衬的首尾末端,所述碳纤维复合材料层穿套在所述金属内衬外周,并且所述碳纤维复合材料层具有环向压紧该金属内衬的趋势。上述结构的身管采用了分段组装的设计方式,可减轻身管每段的重量,便于战士携带。另外,碳纤维复合材料层对金属内衬产生环向预应力,碳纤维复合材料层受到一个环向拉应力,而金属内衬受到一个环向压应力,从而使两者接触更加紧密,提高了身管的承压负荷能力。
本发明提供了一种超疏水碳织物@镍钴双氢氧化物复合材料的制备方法及其用途,按照下述步骤进行:制备碳织物;制备碳织物@镍钴双氢氧化物;制备超疏水碳织物@镍钴双氢氧化物复合材料。本发明所制得的超疏水碳织物@镍钴双氢氧化物复合材料机械性能好、结构稳定。
本发明提供一种制备复合材料的方法,包括以下步骤:S1,提供具有三维多孔结构的泡沫石墨;S2,将所述泡沫石墨加入到氢氧化钾溶液中进行活化,洗涤干燥后得到活化泡沫石墨;S3,将所述活化泡沫石墨加入到混酸中在超声下进行酸化,洗涤干燥后得到酸化泡沫石墨;以及S4,将所述酸化泡沫石墨加入到硫酸镍溶液中混合形成均匀悬浮液,将沉淀剂缓慢滴加到所述悬浮液中,水热处理后洗涤干燥得到泡沫石墨和氢氧化镍纳米线的复合材料。本发明还提供一种由此得到的复合材料以及该复合材料在电容器上作为电极材料的应用。总之,本发明的制备复合材料的方法路线简单、易于控制,有利于大规模生产,而所提供的复合材料作为电极材料具有较大的比电容和优异的循环稳定性。
固结吊索绳头与索套的复合材料及其固结工艺,涉及一种采用树脂基复合材料固结钢丝绳吊索的制作工艺。现有特殊用途的吊索,一般采用合金浇铸固结的方法,不仅工艺复杂、而且由于较高的浇铸温度,不可避免地要降低钢丝绳的强度。本发明的复合材料包含环氧树脂,固化剂,增强材料,其质量百分比为:E-44环氧树脂30-55%,聚酰胺固化剂20-29%,芳纶纤维25-50%。本发明的固结操作在室温下进行,不仅简化了工艺、提高了生产效率、降低了成本、改善了施工环境,而且避免了高温对钢丝绳强度的影响,彻底解决了合金浇铸固结吊索会降低钢丝绳强度的弊病,从而提高了吊索的使用寿命。
本发明涉及一种采用镍铬钛锡合金(NiCrTiSn),应用放电等离子烧结技术钎焊制备立方氮化硼高温超硬耐磨复合材料的方法,属于金属材料领域。一种制备高温超硬耐磨复合材料的方法,采用颗粒大小为60-80μm,纯度为99.99%的钎焊立方氮化硼颗粒高温镍基钎料,与立方氮化硼颗粒按一定配比混合均匀,将混合粉体装入烧结模具中,采用放电等离子烧结工艺钎焊制备立方氮化硼高温超硬耐磨复合材料,工艺参数为:真空度必须控制在6×10-2Pa以上,烧结温度700-900℃,轴向压力20-30MPa,保温时间3-10min,升温速率控制在100℃/min左右。?
一种具有压电阻尼的碳纤维复合材料层合板及其制备方法,它涉及碳纤维复合材料层合板及其制备方法。本发明要解决现有技术存在极化工艺复杂,实际应用性差的问题。本发明的复合材料层合板由压电陶瓷粉、碳纳米管、双马来酰亚胺碳纤维预浸料组成。制备方法为:将双马来酰亚胺树脂溶液制成碳纤维预浸料;将经极化的压电陶瓷,研磨成压电陶瓷粉末并与双马来酰亚胺树脂溶及经酸化处理后的碳纳米管混合,超声后得预混胶料;将碳纤维预浸料铺于模具内,再涂刷预混胶料,放入热压机加压处理,即得。本发明的碳纤维层合板常温下阻尼损耗因子Δtan?δ≥0.016,层间强度提高3%~7%。本发明应用于航空航天飞行器,舰艇等对材料力学性能及减振降噪有特殊使用要求的领域。
本发明提供一种导线用复合材料和导线用复合材料的焊接方法。其能够获得能够抑制在表面上残留异物的导线用复合材料。该导线用复合材料(1)是用于与电池(2)的端子(21、22)焊接的导线用复合材料,具备配置在对电池的端子焊接的一侧的第一Ni层(11)、配置在与焊接的一侧相反一侧的第二Ni层(12)、和以被第一Ni层与第二Ni层所夹的方式配置的Fe层(10),第一Ni层的厚度是由第一Ni层、第二Ni层和Fe层构成的复合材料的厚度的2.1%以上8.2%以下。
本发明涉及一种制备超高分子量聚乙烯基的木塑复合材料的方法。现有的木塑复合材料成本高,难以广泛应用。本发明首先将高密度聚乙烯、马来酸酐和引发剂过氧化二异丙苯放在转矩流变仪中进行熔融接枝,得到相容剂HDPE-g-MAH,其次将硅烷偶联剂用质量分数为95%的乙醇溶液稀释,然后将木粉浸渍在稀释后的硅烷偶联剂中,搅拌,放置通风处自然风干,再放置烘箱中在80℃下干燥2小时,即得到改性木粉,最后将超高分子量聚乙烯、改性木粉、相容剂放入密炼机中混合,密炼,压片,破碎造粒,制备出木塑复合材料。本发明工艺简单,所用设备为常用塑料加工设备,可以实现工业化应用。
本发明涉及高镁铝合金-膨胀矿石复合材料的 制备方法。将高镁铝合金与膨化蛭石和珍珠岩进行复合,用真 空渗流铸造法获得本发明的多孔轻体复合材料。该多孔轻体复 合材料的密度为小于1.9g/cm3, 具有泡沫铝镁合金和膨化蛭石或珍珠岩的双重特性。解决了泡 沫铝的管、带、片材工业生产中泡孔质量难以控制、泡沫压缩 性能等不理想和隔热效果不佳的技术难题。
一种纳米技术领域的碳纳米管/聚合物纳米复合材料制备的方法,金属与二苯甲酮在干燥的有机溶剂中反应,生成碳负离子活性种,这些活性种与碳纳米管相互作用后直接引发乙烯基单体聚合,用醇终止反应,产物收集,干燥,得到碳纳米管/聚合物纳米复合材料,所述的金属是钾、钠、锂中的一种或者几种,乙烯基单体是苯乙烯、甲基苯乙烯、丙稀腈、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸丁酯。本发明得到碳纳米管纳米复合材料中,聚合物分子是接枝在碳纳米管的管壁,碳纳米管与聚合物之间有强烈的相互作用,能够改善材料的性能,制备办法简单实用,不用对碳纳米管进行特殊的化学修饰。
一种软磁复合材料,其特征在于:所述软磁复合材料包括含铁原料、绝缘剂和润滑剂,各组分的重量百分比为:含铁原料92-99%;绝缘剂0.5-5%;润滑剂0.5-3%。所述含铁原料为粉末状材料,包括还原铁粉、雾化铁粉、羟基铁粉和铁合金粉,含铁量为80-99.8%,颗粒分布为20-500目;所述的绝缘剂采用纳米碳酸钙粉,或陶瓷粉,或磁性氧化物粉末;所述的润滑剂为微粉蜡。由上述软磁复合材料制造导磁构件的生产工艺,包括下述步骤:混合、成形、固化、防锈或精整处理。由本发明材料所制成的导磁构件,材料来源广,含铁量高,涡流损耗小,饱和磁感应强度低,导磁率及电阻率很高,具有较高的磁性能和力学性能,其构件加工工艺成本低廉,成形精度高。
本发明涉及一种印刷胶辊专用高性能弹性体复合材料及其制备方法。本发明通过使用原位—改性分散技术、动态微交联技术这2项技术,成功地解决了印刷胶辊用弹性体复合材料制备所存在的低硬度、适中门尼间难以兼顾,以及低硬度、高强度、高耐磨和高寿命间难以兼顾的等技术难题。本发明的复合材料的特点是:在进行挤出缠绕加工时,工艺稳定,效果良好,不发生下垂和断条现象;硫化时,胶辊不发生沉胶现象;硫化后,胶料的性能优异——低硬度、高强度、高耐磨,具有良好的耐油、耐油墨性能,亲水性较好,并且价格低。
本分案申请涉及碳化硅陶瓷纤维/粒子强化金属基复合材料的制备方法,添加Al粒子与熔融态Al‑基合金互溶,与传统的固相法、液相法相比具有低成本,效率高等优点。有效的控制了SiC/Al之间的界面反应的生成。复合材料在摩擦时,薄膜状的界面生成物可以组织裂纹地扩散,增强了强化材料与基体之间的结合力,提高了材料的耐磨性能。本发明制备的碳化硅陶瓷纤维/粒子强化金属基复合材料与现有的金属基复合材料相比,材料的耐磨性能更优异,具有广泛的应用前景。
本发明公开了一种多孔陶瓷复合材料及多孔陶瓷复合材料的制备方法,所述多孔陶瓷复合材料由40重量份至50重量份的石英混合粉、3重量份至8重量份的碳化硅纳米线以及43重量份至58重量份的辅助混合粉组成,并且碳化硅纳米线原位生长于多孔陶瓷复合材料中,通过以石英混合粉做为基础材料,能够降低陶瓷烧结温度,简化制备工艺,通过使得碳化硅纳米线原位生长于多孔陶瓷复合材料中,能够对多孔陶瓷复合材料的三维骨架进行增韧强化,使得多孔陶瓷复合材料制成的基体在装配时不易破损,使用寿命更长,安全性更高,并且碳化硅纳米线能够提高多孔陶瓷复合材料与金属发热膜的结合强度,使得雾化芯的可靠性更高。
本发明公开了一种LiFePO4@C/MXene复合材料的制备方法,首先通过溶剂热法制备磷酸铁锂纳米片,然后利用柠檬酸和乙二醇经高温处理进行碳包覆,最后通过静电自组装的方法实现碳包覆的磷酸铁锂和MXene的复合,经冷冻干燥得到LiFePO4@C/MXene复合材料,在低温复合步骤可有效抑制MXene的氧化,充分发挥二维MXene高电子导电性的优势,制备的LiFePO4@C/MXene复合材料能有效克服磷酸铁锂电子导电性差,循环性能不稳定的问题,且合成条件温和,制备工艺简单,成本低廉。本发明制备的LiFePO4@C/MXene复合材料适用于作为锂电池正极材料。
本发明提供成型品的脱模性优异、且在成型面赋予了脱模性的区域的耐擦伤性优异、能够抑制脱模性降低的成型装置、以及纤维增强复合材料成型品的制造方法。纤维增强复合材料的成型装置(101)具备成型模具(130),所述成型模具(130)用于将在增强纤维基材中含浸有树脂组合物的纤维增强复合材料进行成型而得到纤维增强复合材料成型品,利用三液法测定的成型模具(130)的一部分或全部模腔面(113a)、(123a)的表面自由能为25.0mJ/m2以下。一部分或全部模腔面(113a)、(123a)优选为注入了氟及硅中的任一者或两者而成的注入面。
电容碳/磷酸铁锂复合材料、其制备方法及以其为正极材料的锂离子电容电池,涉及一种磷酸铁锂材料、制备方法及以其作为正极材料的锂离子电容电池,解决现有磷酸铁锂制备成本较高,及采用现有磷酸铁锂制备的锂离子电池的高倍率充放电性能差的问题。复合材料为磷酸铁锂负载在活性炭上。制备方法为采用三价铁盐、磷源化合物、锂源化合物和有机小分子碳源为原料制备得磷酸铁锂前躯体,再将其和活性炭混合烧结即可。锂离子电容电池的正极浆料由电容碳/磷酸铁锂复合材料、导电剂和粘结剂组成。复合材料粒径分布均匀;三价铁盐为原料,制备方法成本降低;电容电池的充放电循环性能好,20C倍率下质量比容量大于60mA·h·g-1。
提供了一种非带电性树脂复合材料及该树脂复合材料的制造方法。采用了将用离子交换基导入剂处理的树脂基体表面用含金属离子溶液处理以导入金属离子、使该金属离子转化的方法,将过去是困难的、使树脂基体本来有的低导电率不变成一定值以上、并能够将防止树脂基体带电程度的极微量的含金属元素成分导入树脂基体表面上,可以制造非带电性树脂复合材料。该非带电性树脂复合材料能够防止带电成为原因的、由静电造成的基体损伤、向基体上附着尘埃等弊害。
本发明涉及一种制备复合材料的工艺,该复合材料包含由钢或钛基材料制成的部分和由铜基或铝基材料制成的部分。该复合材料的各部分通过中间件连接。该中间件同样的包括由钢或钛基材料制成的区域和由铜基或铝基材料制成的区域,这两个区域通过爆炸焊连接。该复合材料的各部分与中间件的各同型区域通过熔焊或扩散焊工艺连接。
本发明公开了一种用于制备具有低自然时效硬度和高人工时效强度铝基复合材料的铝合金和铝基复合材料,属于金属基复合材料和铝合金技术领域。所述铝合金的化学成分:Cu:1.5~2.5%;Mg:0.7~1.4%;Si:0.4~0.8%;Al余。向铝合金基体中添加增强相制成复合材料,该复合材料人工时效后强度高于相同增强相含量高强铝合金基(2009Al、2024Al等)复合材料。同时所述铝基复合材料在自然时效态下硬度低、塑性好,可进行冷变形加工而不开裂。该方法制备的铝基复合材料可以在自然时效态下塑性成型,人工时效后服役,从而兼具良好的加工性能及高的服役强度,适合薄壁、形状相对复杂铝基复合材料的生产应用。
一种应用于星载雷达天线面板的各向异性复合材料及其制备方法。它涉及应用于星载雷达天线面板的复合材料及其制备方法。本发明为解决现有应用于星载雷达天线面板的复合材料不能兼顾横向拉伸强度和纵向拉伸强度、综合力学性能差以及致密度不高的问题,该复合材料按质量分数由60%~80%的沥青基石墨纤维增强体、4%~6%的氮化铝颗粒和余量为基体铝合金制成。方法:先将氮化铝悬浮液涂覆到纤维表面,再固定成束,然后注入铝合金溶液进行浸渗,最后通过喷射冷却液使其快速冷却,得到复合材料。致密度高,在保持高的纵向拉伸强度和纵向热导率的同时,提高了横向拉伸强度和横向热导率,综合性能优异,可应用于星载雷达天线面板及其制备领域。
一种复合材料包括母体材料、高介电常数的金属微粒及包裹所述金属微粒的有机高分子材料;所述金属微粒和有机高分子材料形成核壳结构,所述母体材料和有机高分子材料互不相溶;所述核壳结构离散地分布嵌入在所述母体材料中。以高介电常数的金属微粒为核、有机高分子膜为外壳的核壳结构,将上述核壳结构和母体材料溶液按照一定比例进行混合配制成粘度溶液;然后烘干和固化所述粘度溶液使得所述核壳结构无规则离散地分布嵌入在所述母体材料中,这样形成的复合材料及基于复合材料的介质基板的损耗可降低50%以上。本发明还提供一种基于高介电常数、低损耗的复合材的介质基板和一种复合材料的制造方法。
石墨烯/氮化铬纳米复合材料及其制备方法,它属于电化学领域。本发明要解决采用磁控溅射的方法制备CrN薄膜的工艺过程比较难控制,且设备成本高的技术问题。本发明所述复合材料由石墨烯和氮化铬组成。制备方法是按下述步骤进行的:一、按称量天然石墨和硝酸铬尿素配合物;二、制备石墨烯悬浮液;三、配制硝酸铬尿素配合物水溶液,加到步骤二得到的石墨烯悬浮液中,继续搅拌,得到均匀的分散液;四、制石墨烯/Cr2O3复合材料;五、将石墨烯/Cr2O3复合材料放入气氛炉中,通入氮气,升温后保温,然后在氮气保护下降温到室温,得到石墨烯/氮化铬纳米复合材料。用作锂离子电池负极。
本发明涉及一种Ti5Si3/TiNi记忆合金复合材料,以该记忆合金复合材料的总量计,其包括以下成分:原子百分比为6-33%的Si元素,Ti、Si、Ni三元素满足(50+x-y)∶3x∶(50-4x+y),其中x=2-1l,y=0-3,Ti、Ni和Si三种元素的原子百分数之和为100%。该记忆合金复合材料的制备方法包括以下步骤:按Ti5Si3/TiNi记忆合金复合材料的成分配比选取纯度在99wt.%以上的单质钛、单质硅、单质镍;将单质钛、单质硅、单质镍放入真空度高于10-1Pa或惰性气体保护的熔炼炉中,熔炼成Ti5Si3/TiNi记忆合金复合材料。本发明提供的复合材料既具备记忆合金智能复合材料所具有的属性,同时又具有强度高,界面结合良好等特点。
本发明公开了一种2-氨基乙硫醇调控合成不同尺寸纳米金复合材料的方法,该方法通过2-氨基乙硫醇修饰四氯合金酸,然后以聚(苯乙烯)/聚(丙烯酸)核-壳型微凝胶为载体,将修饰后的四氯合金酸溶液充分溶胀进入微凝胶三维网络结构中,再以硼氢化钠为还原剂、柠檬酸钠为辅助还原剂和稳定剂,合成了不同尺寸的纳米金复合材料。本发明操作简单,利用微凝胶中羧基与2-氨基乙硫醇中氨基之间的相互作用力以及微凝胶壳层网链的限域作用,使纳米金生长在微凝胶壳层上,同时有效的控制纳米金的稳定性,并利用2-氨基乙硫醇中巯基和氨基对纳米金粒子的修饰作用,通过增加2-氨基乙硫醇的用量,使小粒径的纳米金组装生成较大尺寸的纳米金复合材料,实现了不同尺寸纳米金的可控合成。
本发明属于电池材料技术领域,具体涉及一种复合材料前驱体、复合材料及其制备方法和正极片。该复合材料前驱体的制备方法,包括如下步骤:提供含有锡盐、铝盐、氧化石墨烯和镍钴锰三元材料的水凝胶;将所述水凝胶进行干燥处理,得到所述复合材料前驱体。上述制备方法得到的前驱体用于制备复合材料可以显著提高复合材料电化学性能,在锂离子电池的正极材料制备领域中具有很好的应用前景。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!