本发明涉及碳化钛和碳化钒复合材料及其生产方法和应用,属于金属陶瓷领域;旨在制取一种碳化钒和碳化钛共同形成的复合材料。该复合材料可代替钒铁、钛铁作为堆焊焊接组分,用于金属表面堆焊强化。生产方法包括如下步骤:a、配料:碳化钒粉、金属钛粉和碳粉分别按以下质量比称取:VC:Ti:C=1.37~3.00:1.00~1.50:0.17~0.50,混合均匀;b、压制成型:将a步骤得到的混合料压制成密度为2.5~3.0g·cm-3的压块;c、高温合成:将压块置于下述条件烧制:真空度为1.0×10-2~4.0×10-2帕,温度为1300~1610℃,保温3.5~5.0h,冷却即得碳化钛和碳化钒复合料。再经粉碎即得碳化钛和碳化钒复合粉末。这种新型复合材料将在钢铁材料的表面堆焊强化、铁基复合材料和新型钒钛基金属陶瓷等领域获得广泛的应用。
本发明涉及一种高催化性纳米二氧化钛/石墨烯复合材料的制备方法,属于催化纳米复合材料技术领域。所述高催化性纳米二氧化钛/石墨烯复合材料的制备方法步骤如下:1)氧化石墨烯的制备;2)纳米二氧化钛/石墨烯复合材料的制备。本发明的高效光催化性纳米二氧化钛/石墨烯复合材料的制备方法具有如下优点:(1)本发明所采用的溶液只有水,没有其他任何添加剂,因此环境友好,不会产生副产物。(2)本发明操作简单,反应时间较短,稳定性高,重复性好;(3)本发明制备的纳米二氧化钛/石墨烯复合材料具有优异的催化性能。
本发明属于材料冶金领域,具体涉及一种碳包覆含钒复合材料及其制备方法。本发明碳包覆含钒复合材料的制备方法,包括以下步骤:a、液态导电剂的制备:将预添加导电剂溶解在溶剂中,搅拌,调节溶液pH值,得到液态导电剂;b、复合材料前驱体制备:向含钒溶液中加入液态导电剂,再加入沉淀剂,调节溶液pH值,加热,沉淀,制得碳包覆含钒复合材料前驱体;c、碳包覆含钒复合材料制备:将碳包覆含钒复合材料前驱体,在300~400℃焙烧1~2h;随后在700~800℃再焙烧2~4h,得到碳包覆含钒复合材料。本发明制备方法简单,避免现有技术中机械研磨时间长的问题,达到了分子尺度下的均匀混合。
一种无机纳米复合材料改性的耐候型聚氨酯粉末涂料及其制备方法,其特点是将粒径为10~100nm的纳米复合材料0.5~5.0份,加入封闭型异佛尔酮二异氰酸酯7~15份、助剂2~5份、填料30~45份和羟基聚酯树脂40~60份,按预混合、熔融挤出混合、冷却、破碎、细粉碎、分级过筛等六道工序后,制得无机纳米复合材料改性的耐候型聚氨酯粉末涂料,其抗老化指标较不含无机纳米复合材料的聚氨酯粉末涂料提高了100%~200%,硬度、附着力、冲击强度等较不含无机纳米复合材料的粉末涂料有一定程度的提高。
本发明涉及材料领域,具体涉及陶瓷复合材料领域,尤其是涉及一种黑色陶瓷复合材料的制备方法及其应用。本发明黑色陶瓷复合材料的制备方法,主要包括以下步骤:混合压片、预热、焙烧、水淬。本发明采用钛白粉和铝粉为原料,利用铝热反应工艺制备的黑色陶瓷复合材料,其主要成分为钛的低价氧化物TinO2n-1(1≤n≤10)和三氧化二铝,相对于传统制备钛黑的方法,该方法成本低、工艺和设备要求简单,能耗少,原料来源广,制备的产品有较大的应用前景。
本发明涉及铁酸铜光‑芬顿催化磁性复合材料及其制备方法,属于光降解技术领域。本发明解决的技术问题是水热法、模板法制备光催化材料时需控制的参数比较多,工艺复杂。本发明的技术方案是提供铁酸铜光‑芬顿催化磁性复合材料的制备方法,由硝酸铁、硝酸铜、燃料混合配制成水溶液,然后通过低温燃烧合成得到具有磁性的铁酸铜光催化磁性复合材料,所述复合材料的主要成分为CuFe2O4。本发明制备工艺简单,易于工业化生产,制备得到的铁酸铜光催化磁性复合材料作为光‑芬顿光催化剂适用于染料降解以及水处理过程中有机污染物的降解。
本发明公开了一种铁基非晶合金复合材料,所述铁基非晶合金复合材料的组成为:FeaAlbGacY3?dVdInxCoyBzSir,其中a,b,c,d,x,y,z,r为原子百分比,70≤a≤76,3≤b≤5,c的值为0或2,0≤d≤3,0≤x≤1.86,8≤Co≤10,z的值为4或8,0≤r≤3。本发明的铁基非晶合金复合材料具备优异的高塑性和软磁性能,其饱和磁感应强度达到Bs=1.73T,通过采用粉末冶金的方式制备出的大块非晶合金复合材料的致密度达到98.7%,强度高达2.08GPa,力学性能良好,能够满足工业需要,同时,本发明的铁基非晶合金复合材料不含有昂贵的稀土元素,唯一较贵的铟元素需求量也极少,因此其制造成本不高,工艺不复杂,易于实现商业化生产。
本发明涉及无机复合材料领域,具体涉及一种石墨‑钛低价氧化物(钛黑)复合材料的制备方法。本发明制备方法主要包括以下步骤:配料、压制成型、高温还原、球磨后得到石墨‑钛低价氧化物(钛黑)复合材料。本发明制备复合粉体,主要采用TiO2(或偏钛酸)和石墨为原料,采用碳热还原法,在空气气氛下制备石墨‑钛低价氧化物(钛黑)复合材料,具有工艺简单,对生产设备和生产环境要求低,原料价格低且原料储量巨大,该工艺方法便于大规模工业生产的特点。
本发明属于钛基复合材料领域,具体涉及Ti-TiC-石墨复合材料的制备方法。本发明要解决的技术问题是TiC的高熔点,现有方法的大规模沉积效果不佳,工艺繁琐。本发明解决上述技术问题的方案是提供一种Ti-TiC-石墨复合材料的制备方法,包括以下步骤:a、将固体钛与石墨一起放入电子束炉中,在真空条件下,用高功率电子束照射固体钛,同时用低功率电子束照射石墨;b、当固体钛全部熔化后,熔化的钛液和/或产生的钛蒸汽与石墨静置反应0.5~30分钟;c、反应结束后,停止电子束照射,冷却后得到Ti-TiC-石墨复合材料。本发明提供的方法工艺简单,为钛基石墨复合材料的制备提供了新的选择。
本发明涉及一种锌掺杂TiO2/石墨烯复合材料(ZTG)的制备方法,属于光催化功能材料合成技术领域。本发明采用水作为溶剂,硝酸锌为锌源,钛酸丁酯为钛源,采用溶胶凝胶法制备锌掺杂TiO2/石墨烯复合材料。本发明制得的锌掺杂TiO2/石墨烯复合材料光催化性能好,当锌掺杂量为0.5%、氧化石墨烯(GO)复合量为10mg、焙烧温度为450℃、投加量为0.20g时,ZTG样品在32W普通日光灯下光催化降解MB的活性最高达85.0%。本发明的制备方法操作简单并易于控制,成本低。
本发明涉及核壳型磁性金属微粉及其制备方法和应用,属于功能材料技术领域。本发明提供一种核壳型磁性金属微粉,所述磁性金属微粉表面覆盖绝缘层,绝缘层的成份为氧化物和氢氧化物;其中,所述氧化物和氢氧化物由磁性金属微粉中的金属元素氧化得到。本发明技术形成的绝缘层可以有效的降低磁性金属微粉的介电常数,提高磁性金属微粉的微波吸收性能;本发明工艺简单,成本较低,产率高,有很大的利用价值和开发前景。
本发明涉及蓄热材料及其制备方法,属于多功能材料技术领域。本发明解决的技术问题是提供一种利用提钒尾渣制备得到的蓄热材料。本发明蓄热材料,由以下重量百分比的组分烧结而成:石墨3~15%,其余为磁选尾渣和普通陶瓷原料,且磁选尾渣和普通陶瓷原料的重量比为1:0.8~1.2,其中,磁选尾渣为提钒尾渣经碳热还原后磁选得到。本发明以提钒尾渣为主要原料,采用碳热还原‑粉末冶金烧结工艺得到蓄热材料,其制备方法简单,不仅可以综合利用提钒尾渣,解决提钒尾渣污染生态环境的问题,还能降低蓄热材料的成本,且得到的蓄热材料性能优异,蓄热密度高,比热容大,导热性好。
本发明涉及电池的制造领域,特别是一种制备全 钒离子液流电池的电解液的方法,其特征在于:首先将硫酸配 制成1∶1的稀硫酸,然后先加入三氧化二钒,后加入五氧化 二钒,反应得到硫酸氧钒溶液;再加入 Na2SO4、乳化剂OP等添加剂;接着将此硫酸氧钒溶液置于电解 池阴极,相同离子强度的硫酸钠硫酸溶液置于电解池阳极进行 电解,得到4价钒和3价钒各占总钒50%的钒电池用钒电解液。 本发明简化了钒电池装配及化成工序,提高了工作效率,延长 了钒电池电极和隔膜等功能材料的使用寿命,不用更换正极电 解液,从因而避免了原料浪费,有益于规模化生产。
本发明属于钛渣回收利用领域,具体涉及利用高炉渣提钛尾渣制备多孔材料的方法。本发明要解决的技术问题是目前对高炉渣提钛尾渣的再利用经济价值不高。发明解决上述技术问题的方案是提供一种利用高炉渣提钛尾渣制备多孔材料的方法,包括以下步骤:a、将干燥后的高炉渣提钛尾渣与造孔剂、粘结剂、烧结助剂和增湿剂混合均匀后成型;b、将上述成型的混合物干燥后,经高温烧结,得到多孔材料。本发明提供的方法,既拓宽了高炉渣提钛尾渣无害化、减量化和资源化途径,又可获得经济附加值更高的功能材料。
本发明所要解决的技术问题是:提供一种用于真空气雾化制备金属粉末的喷嘴,该喷嘴结构简单,能优化金属液流的破碎模式。
中冶有色为您提供最新的四川攀枝花有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!