本发明揭示了一种523型正极材料的制备方法,包括如下步骤:先取一定量的碳酸锂、523前驱体和二氧化锆球磨珠,且按照先后顺序分别加入球磨罐中并进行搅拌;再将完成配料放置入球磨机中,待球磨机停止运行后取出球磨罐进行过筛处理,过筛完毕后装袋放入干燥箱中烘干;接着取适量样品放入氧化铝坩锅中,然后将坩埚放入通气的马弗炉中,进行烧结程序;再接着将完成烧结程序后的样品进行过筛处理。本发明通过对正极材料的改性,以得到高放电比容量,且循环性能优异的523正极材料的样品。
本发明公开了慢冷杯,包括罐子本体,所述罐子本体由罐体和密封盖组成,所述罐体里设置有高能低温液体,所述高能低温液体为液氢,所述罐体通过罐口设置的螺纹与密封盖上设置的螺纹连接,所述罐体和密封盖之间设置有凸凹密封,所述液氢为比较轻的一种无色无味、透明的低温液体,所述罐体为低温铝合金材质,所述低温铝合金为2195或2090的铝锂合金,所述罐体底部设置有工艺定位台,所述工艺定位台可以使罐体定位在治具上,所述密封盖上设置有工艺定位台,所述工艺定位台可以使密封盖定位在治具上,所述治具通过旋转使密封盖锁紧罐体。本发明能快速将热水凉下来,直接降温到适合饮用的范围。
本发明公开了一种三(三烃基硅基)磷酸酯的合成方法,向反应釜中加入六烃基二硅氧烷和磷酸,在加热、搅拌和回流冷凝的条件下进行脱水反应;然后加入三烃基硅基胺进行蒸馏反应,待胺全部蒸出后,对反应液进行减压精馏,得到所述三(三烃基硅基)磷酸酯。本发明一种三(三烃基硅基)磷酸酯的合成方法,所用原料易得,且具有高转化率和高收率的特点;本发明的合成方法工艺路线简单、安全环保、消耗低,废弃物排放量少,反应得到的三(三烃基硅基)磷酸酯产品的纯度高,达到锂离子电解液添加剂的要求。
本发明涉及一种高强度高韧性砂轮陶瓷结合剂及其应用,其包括如下步骤:混合二氧化硅、三氧化二硼、氧化铝、氧化锂、氧化钠、氧化钙、氧化锌、氧化钡、二氧化钛,得到配合料;将配合料以6~9℃/分钟的升温速率升温至600℃;然后以3~6℃/分钟的升温速率升温至1200℃;然后以2~3℃/分钟的升温速率升温至1450℃;然后保温;然后加入SG磨料,继续保温得到熔液;将熔液水淬后进行湿磨,然后烘干、粉碎、干磨后过200目筛获得高强度高韧性砂轮陶瓷结合剂。本发明以微晶增韧以及Al2O3作为网络中间体增强玻璃网络结构作为理论依据改善陶瓷结合剂制备方法,所获得的陶瓷结合剂具有强度高、韧性好的特点,满足CBN砂轮的制备使用。
本发明公开了一种三(三烃基硅基)亚磷酸酯的合成方法,向干燥的反应瓶中加入亚磷酸和三烃基硅基胺,在加热、搅拌和回流冷凝的条件下边反应边蒸出生成的胺,反应液经精密过滤、减压精馏,得到高纯度的三(三烃基硅基)亚磷酸酯。本发明采用亚磷酸与三烃基硅基胺进行反应,三(三烃基硅基)亚磷酸酯产物的选择性高,所得三(三烃基硅基)亚磷酸酯粗品能很容易提纯到99.9%以上,达到锂离子电解液添加剂的要求;且本发明的原料易得、工艺路线简单,反应过程更安全环保、能耗低、废弃物排放量少,适于工业化生产。
一种高充放电循环稳定性的超级电容器电解液,其由电解质盐和质子惰性有机溶剂组成,所述的电解质盐为双乙二酸硼酸四甲基铵和四氟硼酸锂,所述的质子惰性有机溶剂为碳酸丙烯酯、γ‑丁内酯、乙腈和N,N二甲基甲酰胺的混合。本发明采用适当的质子惰性有机溶剂组成提高了电解质盐在其中的溶解和解离能力,改善电解液的离子电导性能,降低有机电解液的内阻,提高了电解液的电化学稳定窗口,从而使所得的电解液具有良好的电化学稳定性、化学稳定性性及充放电循环稳定性。
本发明涉及光电材料技术领域,提供了一种4, 8‑二取代苯并双噻二唑化合物、衍生物及合成方法,包括:化学式为合成方法包括如下步骤:将芳基锂盐或格式试剂加入反应容器中,再将双噻二唑二酮加入反应容器中,反应后得到4, 8二芳基取代的双噻二唑二醇;将4, 8二芳基取代的双噻二唑二醇在酸性条件下脱水得到4, 8二取代苯并双噻二唑。本发明具有反应步骤较短、污染较小、成本较低、效率较高的优点。
本发明属于薄膜材料领域,涉及一种高压电系数柔性复合材料薄膜的制备方法。本发明提出的制备方法是将吡咯、氟化锂、氟化钪、硝酸钒以及纤维素复合,再高温氧化,得复合金属氧化物,再将复合金属氧化物分散在丙烯腈‑丁二烯‑苯乙烯共聚物/硅烷偶联剂/丙酮溶液中,然后用甩膜机制膜,退火,得柔性压电复合材料薄膜。与现有文献相比,本发明有更好的技术效果,所制备的柔性复合材料薄膜的压电系数为768pC/N,达常规复合压电材料的7倍以上。
本发明提供一种节能风力发电路灯,包括轴座经由螺栓固接在支架上端,第一锥齿轮经键连接连接在转轴上,传动轴安装在所述支架上,所述传动轴上端安装有一第二锥齿轮,所述支架上端沿所述传动轴中心轴线对称安装有一极靴,两所述极靴之间分别安装有一N极电磁铁、S极电磁铁,固定板经螺栓固接在所述支架上,所述固定板上端安装有一灯架,所述灯架上端设有一所述路灯,锂电池经螺栓固接在所述支架上,本发明结构简单,利用风力推动叶片及转轴的转动,利用锥齿轮传动带动电驱在磁场内高速转动,借助电磁感应原理利用变化磁场产生电能,用以路灯的照明,节能环保,供电量足,可充分满足路灯照明用电需求,且使用成本低廉,经济性好。
本发明公开了一种超级电容器材料的制备方法及其应用,该工艺通过将乙炔炭黑和硫酸、苯乙烯磺酸钠进行混合加热,经保温、冷却、稀释、离心分离、洗涤等一系列操作后得到改性炭黑复合物,再加入磷酸氢二锂、氯化镍于反应釜中进行反应,干燥后进行酸处理,再将其与丙烯腈粉末、二甲基亚砜、正硅酸乙酯等经高温反应的反应物混合,加入蒸馏水超声分散,并添加水性聚氨酯乳液、四硫化三钴、氯化亚锡、三乙醇胺盐、硅烷偶联剂进行高温反应,最后通过洗涤、真空干燥得到成品。制备而成的超级电容器材料,其能量密度高,最大功率密度高,充放电效率高,具有较好的应用前景。同时还公开了由该制备工艺制得的超级电容器材料在制备超级电容器中的应用。
本发明公开了一种极卷用转轴装置,包括卷轴主轴、非金属轴承、卷筒。卷轴主轴的外周面上设有沿卷轴主轴的轴向延伸的多个凹槽;每一凹槽中间隔开地安装有多个非金属轴承,每一非金属轴承的轴向与卷轴主轴的轴向垂直;卷轴主轴穿过卷筒,非金属轴承与卷筒的内壁接触以使非金属轴承支撑卷筒。本发明可以减少极卷上下料过程中产生的金属异物,从而降低因金属异物掉落粘附在极卷上而导致的锂电池性能失效及安全风险;由于产生的异物少,避免了非金属轴承发生卡死的情况,且非金属轴承与卷筒的内壁之间摩擦系数小,因此可以在极卷上下料过程中有效提升员工的劳动效率,降低安全隐患。
本申请提供了一种负极片孔隙率的设计方法,包括:在特定电流密度下,获得循环后不同负极片孔隙率的负极动态电压模型;根据所述循环后不同负极片孔隙率的负极动态电压模型,选择循环后负极电压在安全电压范围内的且数值最小的负极片孔隙率,作为孔隙率阈值;根据特定的循环寿命和所述孔隙率阈值,确定初始负极片孔隙率的最小值。本申请技术方案确定的初始负极片孔隙率的最小值可以在保证锂电池循环寿命的前提下,提高电芯能量密度。
本发明公开了一种自限温电热膜及其应用。自限温电热膜包括基材、电极和碳膜,碳膜由水性导电浆料制成,水性导电浆料包括树脂组分、导电组分、聚烯烃分散体和蜡乳液,所述聚烯烃分散体是熔点为60℃以上的结晶性聚烯烃分散体,所述蜡乳液的熔点为50℃以上、粒径为0.1~10μm。本发明创造性地在水性导电浆料中引入聚烯烃分散体和蜡乳液,并通过树脂的交联使得碳膜具备了优异的自限温效应,大大提升了电热膜及电地暖系统、自发热饰面材料的工作安全性。本发明可广泛应用于各类需要电热膜的场合,在家装采暖、锂电池模组加热、汽车座椅和方向盘加热等领域具有广阔的应用前景。
本发明属于锂电池领域,具体涉及一种纽扣电池激光焊接方法,包括以下步骤:将裸电芯卷绕完成,所述裸电芯带有凸出的正负极两个极耳;负极壳具与裸电芯的负极极耳进行激光焊接;正极壳具与裸电芯的正极极耳进行激光焊接,通过激光焊接的方式把壳具与极耳焊接在一起;负极极耳与负极壳具焊接区域为开口螺旋线形;正极极耳与正极壳具焊接区域为开口螺旋线形。本发明所述焊接方法简单,焊接效果较好,可以承受的拉力值最大,即焊接的牢固程度最好。
本发明公开了一种负极粘结剂及其制备方法和用途。本发明的负极粘结剂,由聚乙烯亚胺与羟基烷基酸经聚合反应得到,所述聚乙烯亚胺与所述羟基烷基酸的摩尔比为0.9‑1.1。本发明的负极粘结剂与硅基材料具有优异的粘结力,可以抑制硅负极的体积膨胀,明显提高了硅氧负极的倍率性能和循环性能及稳定性;亲水性好,可以有效避免浆料沉降;提高了极片空气干燥过程中对水滴的抗御能力,提升了极片的烘干速率,增加了极片的耐湿性,延长了锂离子电池的使用寿命。
本发明公开了一种可使金黄色葡萄球菌显色的选择性培养基添加剂,每1000ml培养基中组成成分及含量为:氯化钠10-15g、甘露醇10-20g、亚碲酸盐0.1-0.5g、氯化锂1-5g、甘氨酸1-10g、磷酸钾1-5g、硫酸粘杆菌素5-50mg。本发明无须使用动物血液蛋黄,延长了培养基储藏时间,避免了误用污染动物血液蛋黄等引起的质控问题,简化了配制培养基过程,可应用于平板培养基,也可应用于试纸片等简易检测试剂,只需加入蛋白胨、酵母浸出物等基础营养成分,均匀涂抹到无纺布等就可。
本发明公开了一种合成莫西沙星侧链(S,S)-2,8-二氮杂二环[4.3.0]壬烷的中间体8-苄基-2,8-二氮杂二环[4.3.0]壬烷的方法。该方法以8-苄基-7,9-二氧代-2,8-二氮杂二环[4.3.0]壬烷为原料,采用金属硼氢化化物与金属卤化物MXn还原体系进行反应,还原羰基而得目标产物。本发明所用金属硼氢化物与金属卤化物MXn还原体系,避开了价格贵,生产操作危险的还原试剂氢化锂铝以及具有毒性的三氟化硼和金属硼氢化化物的还原体系,此法降低了生产成本,而且提高了生产的安全性,为莫西沙星侧链(S,S)-2,8-二氮杂二环[4.3.0]壬烷的工业化生产提供了一条经济、安全的合成路线。
本发明公开了一种酰胺的制备方法,以醛衍生物和甲酰胺衍生物为反应底物,以碘化物为催化剂,叔丁醇过氧化氢为氧化剂通过脱羰双自由基交叉偶联反应制备得到酰胺;其中,所述醛衍生物的化学结构式为:式中,R1选自:萘基、杂环、烯烃基或单取代芳基所述碘化物选自:碘化钠、碘化钾、碘化亚铜、碘化锂、碘单质、四正丁基碘化铵、四正庚基碘化铵、四甲基碘化铵苄基三甲基碘化铵中的一种。由于本发明采用碘化物作为催化剂,利用双自由基交叉偶联法制备酰胺,避免使用传统的价格昂贵且毒性较大金属催化剂与繁琐的实验方法,使反应更简便易行,更安全更绿色更经济,而且反应条件相当温和,后处理更加简单,具备潜在的工业应用价值。
本发明提供了一种卷绕式电芯、电池、其装配方法及电动装置,所述卷绕式电芯包括卷芯和中心管,所述卷芯内部沿长度方向具有贯穿所述卷芯的空腔,所述中心管设置于所述空腔内,所述中心管的外周包裹有弹性绝缘层。本发明提供的中空结构的卷绕式电芯增加了卷芯的外表面积,更有利于散热,通过在中心管的外壁包裹有弹性绝缘层,弹性绝缘层可以起到防止短路的作用,同时也能有效缓解负极片充电时膨胀时产生的挤压力,有利于延长锂电池的长循环寿命。
本发明提供了一种生物相容性好的生物涂层及其制备方法,其中,所述的生物涂层用作为医用金属、医用合金、医用无机非金属材料、医用高分子材料的基材的表面,其为钛系、锂系及钒系的MXenes材料。本发明的生物涂层不仅具有优良的生物活性和生物相容性,还具有优异的抗菌性,因此可广泛应用于植入生物材料领域。
本发明属于锂电池外包装技术领域,具体公开了一种铝塑膜的设计方法及一种铝塑膜,所述设计方法包括以下步骤:步骤1.铝塑膜设计;步骤2.基于步骤1设计的铝塑膜通过公式S=(TA*DA+TB*DB*3)/(TC*DC*2)计算卷曲指数来进行铝塑膜冲压卷曲度预测;步骤3.如果步骤2预测铝塑膜不发生冲压卷曲则设计结束,否则回到步骤1重新设计铝塑膜。本发明通过卷曲指数进行冲压卷曲度预测,能够在冲壳前预判铝塑膜的卷曲性能,从而减少不必要的设计和生产,有效降低试验成本和时间损耗,快速设计出冲壳不卷的铝塑膜。
本发明涉及电子视光技术领域,具体为一种多因素光路控制的近视防控智能眼镜及控制方法,智能眼镜包括镜框,镜框内的锂电池与柔性FPC线路板连接,镜框的前端安装有两处可雾化镜片,可雾化镜片与柔性FPC线路板连接,柔性FPC线路板上安装有测距光强一体化传感器、窄角光强传感器、多轴加速度传感器和M0驱动控制内核,通过窄角光强传感器、光强测距一体化传感器和多轴加速度传感器以获取特定角度和特定距离环境光强、前方障碍距离和用户头部姿态角度数据,通过光视路环境评估算法的函数公式来计算用户用眼适应度评估值,以此来控制用户的用眼情况,避免不良的用眼情况出现。
本发明公开一种氧化亚铜复合材料的制备方法,包括如下步骤:将氧化亚铜和尿素,碱充分混合,加热进行反应,然后将反应后的产物洗涤后烘干,得到所述氧化亚铜复合材料。本发明还公开上述制备方法制得的氧化亚铜复合材料及其应用。本发明通过原料和反应时间的控制,为氧化亚铜原位合成氮化铜得到复合材料提供了一种方便可行的新方法;由于所使用的尿素的量有限,其产生的氨气量少且可控,不使用氨气钢瓶,实验条件要求更低,操作简单便捷,安全系数高。本发明得到的氧化亚铜复合材料,是一种内部为球形、外部为立方体的核壳结构材料,其应用于锂空气电池反应中,可显著提升催化活性,同时可以提高材料性能的稳定性。
本发明涉及分子生物学技术领域,具体涉及一种不含PH缓冲液高度兼容磁珠法病毒核酸提取试剂盒的病毒保存液,其包含以下成分:盐酸胍,十二烷基硫酸锂,硫酸铵,曲拉通X‑100等蛋白变性剂和核酸保护成分,可以迅速灭活病毒以及DNA和RNA酶类,既具有裂解病毒样本的作用,同时也可以保护DNA和RNA的稳定性。本发明病毒保存液的不需要加入三(羟甲基)氨基甲烷盐酸盐、乙二胺四乙酸等PH缓冲液以及、异丙醇或乙醇等可能造成成分,不会对后续的提取造成干扰,能够与市场上常见的各类磁珠法病毒核酸提取试剂盒兼容,提取核酸时,样本与裂解液可以按试剂盒建议的比例至100%之间的任意比例混合,即可以少加甚至不加裂解液,进而提高样本的用量,获得更多的病毒核酸和更准确的检测结果。
本发明涉及复合固态电解质膜及其制备方法和固态电池,所述复合固态电解质包括陶瓷电解质粉体、有机聚合物粘结剂、锂盐和纳米化填料;所述纳米化填料选自氧化铋、氮化硼、氮化铝、碳化硅、氧化钙和氧化镁中一种或多种;所述陶瓷电解质粉体与纳米化填料的质量比为(2‑10):1。解决了电解质膜导热性差的问题。
本发明涉及一种四(二甲氨基)钛的合成方法。该合成方法包括如下步骤:将烷烃溶剂和有机金属锂化合物混合,制备第一反应物;以气体流出压力0.12~0.15MPa导出二甲胺气体,将所述二甲胺气体在‑10~‑20℃温度条件下冷凝,形成的二甲胺冷凝液加入至所述第一反应物中进行第一反应,制备第二反应物;于所述第二反应物中加入四氯化钛进行第二反应,经后处理制备所述四(二甲氨基)钛。该合成方法能够避免上述爆炸隐患和危险因素,且可能大大减少固废和液废的产生,安全环保,同时四(二甲氨基)钛收率高,工艺便于操作。
本发明公开了复合固态电解质及其制备方法和应用。其中复合固态电解质的制备方法包括:对无机快离子导体、锂盐、聚合物、预聚物和/或可聚合单体、引发剂进行熔融共混;对得到的熔融共混物进行流延成型和升温固化,以便得到无机/聚合物复合固态电解质膜。该方法将熔融共混、流延成型和热固化成型工艺联用,不仅无需使用溶剂,工艺环保,适合进行规模化生产,而且制备得到的复合固态电解质膜均匀稳定,具有较好的力学强度、热稳定性和电化学稳定性,机械加工性能好、离子电导率高,不易造成电池短路。
中冶有色为您提供最新的江苏苏州有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!