本实用新型涉及电动车零部件技术领域,尤其涉及一种电动车锂电池盒。目前的锂电池盒不能充分利用电动车上的安装空间,拆卸更换较为费时,而且锂电池在电池盒中不能很好的定位和固定,导致锂电池松动和电力输送时接触不良。本实用新型通过把电池盒和电池固定板设置成前端小于后端的形状,有效地利用轮毂和座杆之间的空间。通过把卡扣设置在卡槽中,防盗锁设置在锁头导向孔中,在安装座上设置锁头插槽,有效地提高了电池盒的安装拆卸效率。通过并排对称设置电池固定板,在电池固定板两端分别设置侧面插槽和底部插槽,使得锂电池能够实现快速定位和固定,有效地防止锂电池松动和接触不良。本实用新型主要用于电动车锂电池盒。
本发明涉及电极材料领域,公开了一种固态电解质改性钛酸锂负极材料及其制备方法,该钛酸锂负极材料的微观形貌为:二次颗粒呈现球状,粒径为5‑20μm,该二次颗粒由晶粒大小为20‑200 nm的一次颗粒组成;该钛酸锂负极材料中的钛酸锂颗粒表面附着含氟氧化物和氟化物组成的锂离子固态电解质,锂离子固态电解质的质量分数为0.1‑3%;其制备方法为:将一种或多种含氟的锂电池电解液、二氧化钛和锂盐经两次砂磨、两次喷雾造粒和两次固相煅烧制得。制得的钛酸锂负极材料振实密度达到1.3 g/cm3以上,pH值8‑10,并具有较好的倍率性能,5C放电容量达到135 mAh g‑1以上。
本实用新型提供了一种锂离子电池循环寿命的检测装置,该锂离子电池循环寿命的检测装置,包括两个底板及压力传感器,两个底板平行设置,待测锂离子电池位于两个底板之间;压力传感器安装在底板与待测锂离子电池相对的一个侧面上,压力传感器的输出端电性连接在信号处理器上。上述锂离子电池循环寿命的检测装置,由于在底板上设有压力传感器,在锂离子电池进行充放电循环测试时,由于锂离子电池厚度方向发生膨胀,压力传感器可以将由于锂离子电池厚度变化造成的压力变化及时反映给信号处理器,通过循环次数及容量衰减率与压力变化的关系图,可以评估出锂离子电池的循环寿命,上述检测结果较准确,且评估方法较简单,适应性较强。
本发明属于润滑脂的技术领域,公开了一种含纳米铜的复合锂基润滑脂的制备方法。具体为:将12‑羟基硬脂酸、己二酸和基础油的混合物倒入制脂釜中,加温处理,加入氢氧化锂的水溶液,恒温皂化反应,然后再升温处理后,加入另外一半的基础油,抗氧化剂T557,继续升温处理,急冷,研磨,得复合锂基润滑脂;再与超声完毕的含纳米铜的基础油混合,放入分散机中,用磨砂轮混合搅拌。复合锂基润滑脂具有良好的机械安定性,胶体安定性和良好的耐高温性,纳米铜具有超塑延展性及高强度机械性能等,可以明显改善润滑脂的摩擦性能和极压性能。通过配方和工艺方法的改进,探索研制出一种含纳米铜复合锂基润滑脂,可以增强一般复合锂基润滑脂的摩擦性能及抗压性能。
本发明涉及锂离子电池正极材料的制造技术,具体是一种锰基层状晶体结构锂电池正极材料及其制备方法。该锰基层状晶体结构锂电池正极材料的化学式为:Li[Li0.20Ni0.133Co0.133Mn0.534]O2-aFa,其中0.002≤a≤0.02。本发明的正极材料及其制备方法用较便宜的金属锰来替代钴酸锂中的绝大部分钴,原材料成本比较低,而且制备工艺简单,微米级别的粉末颗粒即可表现出卓越的电池性能。该正极材料的容量高达220mAh/g,比钴酸锂及磷酸铁锂离的容量高50%左右。其电池性能卓越,经测试,在1C放电倍率下,经过100个充电循环,还保有最初容量的95%左右,而且,在超大电流(超过10C倍率)放电情况下,实验无任何着火和爆炸现象,证明其卓越的安全性能。
本发明涉及一种用于盐湖卤水、海水、油气田卤水、地下含锂卤水含锂废水中提锂用的锂离子筛颗粒的制备方法。所述的锂离子颗粒是将锂离子筛研磨后再与造孔剂、填料、水性树脂乳液混合后挤出成型,通过加热完成干燥及固化过程,最后经过酸浸水洗后制得。本发明具有制备工艺简单环保,成本低廉等优点,制得的锂离子筛颗粒硬度高、孔隙率高、选择性高、吸附容量高、吸附速率快,循环寿命长。
一种超高倍率、超长循环寿命纳米磷酸铁锂动力电池及其制作方法,以重量百分比计,包括以下步骤:1)控制环境湿度;2)配置LFP预混液;3)砂磨;4)高磁过滤;5)过滤器过滤;6)配置胶液;7)制备浆料;8)涂碳铝箔与极片涂布;9)热辊极片;10)真空烘烤;11)检验,本发明,加工制作的纳米磷酸铁锂电池的内阻、循环性能、高倍率放电、低温性能等都远优于普通工艺制造的电池,电池的自放电远低于普通工艺制造的电池。电池在高倍率下的循环寿命从2000次增加到了8000次以上;其性能均完全满足电动汽车用电池、赛车用电池所需的要求。
一种基于能量互补的钠‑锂离子电池集成热管理系统,通过钠离子电池模组和锂离子电池模组相间布置形成钠‑锂离子电池组合体,利用钠离子电池高功率和低温性能以及锂离子电池高能量密度,采用热管换热器作为换热媒介,在低温工况下将钠离子电池工作产生的热量从与钠离子电池模组接触的热端传递至与锂离子电池模组接触的冷端,使锂离子电池模组升温至适宜的温度范围内启动并工作,钠离子电池和锂离子电池得以优势互补,协同工作,解决了低温工况下钠离子电池的低能量密度和锂离子电池低性能问题;在高温工况下,通过BMS单元和制冷系统控制水冷板对钠离子电池和锂离子电池进行冷却,使电池在合适的温度下工作,提高电池的安全性、稳定性和适应性。
本发明属于锂离子电池材料制备领域,具体的说是一种富锂三元复合材料及其制备方法,其首先制备出外层包覆有聚合物的锂粉,之后添加到三元材料中混合均匀后,再在其偏铝酸锂溶液中浸泡,干燥制备出核壳结构的三元复合材料。其制备出的材料利用三元材料包覆的锂粉为充放电过程中提供充足的锂离子,从而提高其首次效率及其倍率性能,同时依靠最外层的偏铝酸锂中的锂离子提高其大倍率条件下的锂离子传输速率,同时外壳层具有与电解液较好的相容性,提高其循环性能。
本发明涉及一种LiAlO2包覆尖晶石锰酸锂正极材料的制备方法。该方法包括以下步骤:a.以电解二氧化锰、碳酸锂、三氧化二铬为原料,按摩尔比Li/Mn=0.51、Cr/Mn=0.026比例配料并破碎、混合;b.将混好的原料置于空气气氛烧结炉内烧结;粉碎、过筛二次混合;c.将二次混合后的料置于空气气氛烧结炉内,保温10-20h;d.将得到的二次烧结品与氟化锂破碎、混合;e.将步骤d得到的混合物置于空气气氛烧结炉内,得到LiMn1.95Cr0.05O3.95F0.05;f.配置浓度为0.2mol/L的单水氢氧化锂和异丙醇铝的混合水溶液进行包覆,得到最终产物LiAlO2包覆的LiMn1.95Cr0.05O3.95F0.05。本发明通过对尖晶石锰酸锂正极材料的包覆改性,有效提高了正极材料的容量和循环性能。
本发明属于化工分离材料技术领域,涉及吸附提取锂,尤其涉及一种纤维素基提锂材料,以纤维素碳膜为基底,利用水热过程在其表面原位生长一层三钛酸钠晶须而成;其中,所述纤维素碳膜和三钛酸钠晶须的质量比10:1~100:1;所述纤维素碳膜中碳纤维的直径5~10μm,长度大于100μm;所述三钛酸钠晶须长度200 nm~1000 nm,直径为10~50 nm。本发明还公开了所述纤维素基提锂材料的制备方法及应用。本发明所述纤维素基提锂材料内部是多孔碳纤维结构,比表面积大,有利于吸附;多孔碳纤维表面原位生长的三钛酸钠晶须可充分吸附锂离子,且易回收;避免纯三钛酸钠粉末因较高的表面能在液相中易团聚,较小的尺寸易溶损等缺陷。本发明制备方法简单,易工业化。
本发明属于纳米材料制备领域,具体涉及一种锂离子电池用中空铁锰复合氧化物材料的制备方法。主要步骤是将铁氰化钾溶解于水中,加入表面活性剂,将溶液与二价锰盐的水溶液混合,30-80℃下搅拌反应1-3h,将沉淀离心分离,用水洗涤后干燥,得到前躯体Mn3[Fe(CN)6]2;将前躯体Mn3[Fe(CN)6]2在400-700℃煅烧2-5h,得到颗粒形状规则的铁锰复合氧化物中空纳米结构材料。由于该材料的中空结构能够为嵌锂和脱锂提供一个缓冲空间,降低材料在充放电循环过程中的体积变化,因此该材料显示出优异的贮锂性能和循环稳定性,有望应用于锂离子电池的负极材料。本发明提供了一种制备铁锰复合氧化物中空纳米结构材料的新方法,制备工艺简单,反应时间短,可控性好,生产成本低,易于工业化实施。
本实用新型公开了一种新能源汽车锂电池箱的散热结构,包括箱体,所述箱体的内部设置有锂电池组,所述箱体的内部固定连接有泡沫铜,所述泡沫铜的内壁与锂电池组的表面接触,所述箱体的顶部固定安装有盖板,所述盖板的底部固定安装有导热板。本实用新型由箱体、锂电池组、泡沫铜、盖板、导热板、散热板、支撑块、送风机、输送管和过滤器的配合使用,从而具备可对锂电池箱进行快速散热的优点,解决了传统的锂电池箱结构单一,缺少散热结构,在新能源汽车长时间行驶或充电时锂电池箱的温度会随之升高,其只能利用自然风进行散热降温,散热效率较差,锂电池易发生老化,容易造成降低锂电池使用寿命的问题。
本实用新型涉及一种带有减震功能的锂电池储存箱,属于锂电池存储技术领域。所述锂电池储存箱设置有箱体,所述箱体里设置有多个锂电池储存架,所述锂电池储存架里放置有多个锂电池,所述锂电池储存架由多个横梁和立柱相互连接而成,所述锂电池储存架之间设置有缓冲装置,所述箱体的底部设置有多个橡胶垫,所述缓冲装置为弹簧或者减震棉,所述锂电池储存箱的顶部设置有手提装置,所述锂电池储存架的数量至少为五个。本实用新型的有益之处是:设置有箱体,在箱体内设置有锂电池储存架,在锂电池储存架之间设置有缓冲装置,在箱体的底部设置有多个橡胶垫,通过缓冲装置和橡胶垫达到了锂电池缓冲的目的,本实用新型结构简单,操作方便,成本较低。
本发明公开一种中空微米球形钛酸锂负极材料及制备方法,所述中空微米球形钛酸锂负极材料,即金属氧化物包覆在钛酸锂负极材料表面而形成,其中金属氧化物与钛酸锂负极材料的量按质量比计算即金属氧化物中的金属:钛酸锂负极材料为0.2‑5:100。其制备方法即按质量比计算,钛酸锂:金属粉末:分散剂为1:0.002‑0.05:0.01‑10的比例将钛酸锂、金属粉末和分散剂混合均匀后烘干,得到的前驱体在空气或氧气条件下以2‑10℃/min速率升温至300‑700℃并恒温2‑10h后,自然冷却至室温,即得比容量及快速充放电性能优异的中空微米球形钛酸锂负极材料。
本发明提供了一种锂离子电池组装置,包括用于放置电池的盒体,盒体内部设有一个或多个放置锂离子电池的电池位,盒体内部的上、下两端分别设置有正极、负极的极板,盒体的顶部和底部分别设置有正、负极,正极与正极极板连接,负极与负极极板连接,锂离子电池的负极由碳纳米管材料制成。本发明的锂离子电池组装置将多个锂离子电池的电能聚合,而且本装置中的锂离子电池通过采用碳纳米管材料作为锂电池的负极,碳纳米管结晶度高、导电性好、比表面积大、微孔大小可通过合成工艺加以控制,比表面利用率可达100%,使电池的容量骤然上升了3‑4个数量级,使用年限超过5年。另外,本发明制备方法工艺条件可控,制备的负电极性能稳定。
本发明属于锂离子电池技术领域,具体涉及一种氮参杂碳包覆磷酸铁锂复合材料及其制备方法。所述磷酸铁锂的复合材料为球形核壳结构,所述壳层的厚度为1~5um,包覆量为1~5%,其中氮参杂含量为25~35%;制备方法包括:(1)制备球形磷酸铁;(2)制备磷酸铁锂前驱体;(3)制备有机氮源包覆液;(4)制备氮参杂碳包覆磷酸铁锂。本发明的一种氮参杂碳包覆磷酸铁锂复合材料及其制备方法,制备过程简单,易于控制,便于操作,能改善磷酸铁锂材料的电子离子传输效率,提高其倍率性能和循环性能,且耐低温性能显著。
本发明是关于一种方块型锂电池与电源插座组合结构,设有两并排设立的方块型锂电池,并于两并排的方块型锂电池间设有电源插座,且使方块型锂电池与电源插座之间以导电线相连接,借此,利用将电源插座设置于两块并排的方块型锂电池中间形成之间隙处设计,即可有效缩减方块型锂电池与电源插座组合后的整体体积,达到方便装配使用等实质效益。
本发明公开了一种制备纳米级碳包覆磷酸铁锂的水热合成方法,属于锂离子电池正极材料领域。其步骤为:将磷源溶液、铁源溶液、碳源、锂源溶液和沸点提升剂按顺序依次加入反应装置内,混合,再在惰性气体下加热至60℃~180℃进行反应,反应后冷却,过滤出沉淀物,得到纳米级磷酸铁锂前驱体,然后将该纳米级磷酸铁锂前驱体在隋性气体和氢气的混合气体保护下,于400℃~600℃下烧结。本方法实现了锂、铁和磷等分子水平上的结合,产物的颗粒非常细而且分布均匀,由于采用了沸点提升剂,从而降低反应釜的反应温度和压力,制备的工艺简单,流程短,容易操作控制,并且反应温度低,时间短,能量消耗低,易实现大规模工业化生产。
本发明提供一种锂电池火灾模拟及危害分析方法;通过开展小尺度锂电池火灾实验,基于能量释放及耗氧原理获得电池热释放速率;采用t平方火模型构建单个锂电池火灾热释放速率数学模型;通过将模型模拟结果与实验结果进行对比,验证热释放速率数学模型可靠性;构建锂电池模组火灾热释放和电池数量的定量关系;建立锂电池模组个体电池点火时间间隔与电池间距的定量关系;建立锂电池火灾模型;将锂电池火灾模型导入火灾模拟软件FDS;应用FDS,开展三维场景下锂电池火灾模拟及危害分析。
本发明提供一种粉末型高容量钛系锂离子交换剂的制备方法,所用钛源为为硫酸法生产线上的偏钛酸,可以在低锂源消耗和较短的煅烧时间制得前驱体。本发明中前驱体锂离子洗脱工艺为罐中搅拌加酸脱锂,通过控制罐中浆料H+浓度来防止钛的溶损,溶出的锂富集在溶液中,通过固液分离得到高浓度低酸度的锂液,减少浓缩能耗及废酸中和用碱,从而大幅降低生产成本。
本发明公开了一种含锂硅溶胶掺杂PVDF复合凝胶聚合物电解质薄膜及制备方法,薄膜厚度为30~50μm,按质量百分比由组分:含锂硅溶胶为1~10%,分子量为5×105聚偏氟乙烯为30~48%,1M六氟合磷酸锂碳酸酯电解质为50~61%制备而成。其制备步骤为:首先通过溶胶凝胶法制备得到含锂硅溶胶,然后将含锂硅溶胶掺混PVDF的N’N-二甲基甲酰胺溶液,采用浸没沉淀法制备得到复合聚合物多孔膜,多孔膜经干燥后吸附液体电解质得到复合凝胶聚合物电解质薄膜。薄膜的离子导电率在30℃下达3.87×10-2Scm-1,电化学窗口达5.1V。本发明在聚合物锂离子电池等领域应用具有良好前景。
本发明公开了锂电解槽用输料装置,包括泵、储料箱、吸料管、出料管和箱体,泵和储料箱设置在箱体的内部,吸料管和出料管分别连接在储料箱的两侧位置,吸料管伸入锂电解槽内,泵还连接吸料管,从而驱动吸料管将锂电解槽内的锂熔液吸入储料箱内;被吸入储料箱内的锂熔液通过出料管进入油膜扩散泵进行冷却并成锂锭。本发明的输料装置,采用泵将锂熔液从锂电解槽中通过吸料管吸入储料箱内,然后再通过出料管输送至下一个工序油膜扩散泵进行冷切并制成锂锭,避免了工作人员与锂锭的直接接触,减少了锂及锂化物对人眼或者身体的毒害,提高了工作人员的安全性能和健康性能;并本发明采用机械装置代替了手工操作,提高了生产效率。
本专利涉及锂离子电池,特指一种动力电池用高性能纳米级镍锰酸锂正极材料LiNixMn2-xO2(0< x< 1)的制备方法其制备步骤如下:将含镍源化合物和锰源化合物按化学计量比先混合均匀溶于去离子水中,加入定量复合模板剂后再滴加沉淀剂和络合剂,搅拌一段时间后放入水热釜中反应,反应后悬浊液再通过离心分离,以去离子水分别洗涤2-3次,烘干得到粉末,将粉末与锂源化合物均匀混合后煅烧冷却得到最终产品。本发明主要解决了目前镍锰酸锂制备方法所需煅烧温度高、煅烧时间长、颗粒尺寸大的缺点,制备的镍锰酸锂材料颗粒尺寸细小、比容量高且具有优良的电化学性能,非常适合在动力电池中的应用。
本发明公开了一种磷酸铁锂电池用的石墨烯复合导电剂,同时还公开了该导电剂的制备方法。本发明导电剂由石墨烯、活性炭和粘结剂组成,组成成分的重量比为:石墨烯:活性炭:粘结剂=1:(0.001~0.1):(0.01~1)。制备方法包括以下步骤:1)制备A溶液、2)制备B溶液、3)制备导电剂。本发明,制备方法简单,制得的导电剂分散均匀,稳定性好,导电剂的电子传导能力强且热量传导均匀,掺杂到磷酸铁锂电池里面具有较强的吸液保液能力,采用本发明的导电剂制得的磷酸铁锂电池的电化学性能得到显著提高,其制备的石墨烯复合导电剂掺杂到50AH磷酸铁锂正极材料里面,较未掺杂复合导电剂的磷酸铁锂正极材料其交流内阻降低20%,循环寿命提高15%。
本发明公开了一种抑制热失控传播的锂离子电池组热管理系统,包括电池盒、锂电池模组,所述锂电池模组由多个锂电池本体组成;多个所述锂电池本体依次均匀的放置在电池盒内,每两相邻锂电池本体之间设有一组散热单元;每组散热单元包括依次贴合的第一相变材料片、第一散热翅片、气凝胶板、第二散热翅片以及第二相变材料片,相邻电池之间采用相变材料、散热翅片、气凝胶板的组合,当电池正常工作时,可以起到高效吸收电池热量的效果;当电池发生热失控时,阻燃型相变材料在吸收热量的同时,发挥阻燃性能,另外气凝胶板隔温防火的作用。整个组合可以有效抑制热失控在相邻电池之间的传播。
本发明属于电池技术领域,具体公开了一种具有柔性特性的全固态锂‑空气电池正极的制备方法。本发明通过对正极结构的合理设计,引入聚合物电解质为锂离子传输骨架,制备出具有高锂离子传输能力、高电子电导性、丰富孔隙结构的正极,并以此提升固态锂‑空气电池的性能。且制备出的正极具有柔性特质,可以满足在柔性固态锂‑空气电池上的应用。本发明为全固态锂‑空气电池正极高效、可控的制备提供了一条新的途径,具有广阔的应用前景。
中冶有色为您提供最新的江苏镇江有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!