本实用新型公开了一种节能型电动汽车锂电池用保温装置,包括保温罩,保温罩的上方设有封盖,封盖的下侧粘贴有一号橡胶垫,封盖的四角均嵌设有连接螺栓,保温罩底壁粘接有二号橡胶垫,保温罩的上侧四角对应连接螺栓均开设有螺纹孔,保温罩侧壁开设有若干穿线孔,穿线孔内均嵌设有橡胶套,保温罩的一侧设有风机和加热箱,加热箱内固定嵌设有电热管,风机输出端固定连接有连通管,连通管穿过加热箱和电热管的顶端相连通,本实用新型一种节能型电动汽车锂电池用保温装置,测温仪、电热丝、PLC控制器和温控器共同形成了控温回路,通过编辑PLC控制器的控温程序,能够有效保证加热回路不会出现超高温现象,保证了锂电池的使用安全。
本实用新型公开了一种带有泄压装置的电动车防爆锂电池,包括电池盒,所述电池盒的顶部设有两个端子,所述电池盒的内部设有锂电池,所述电池盒和锂电池之间设有弹性空心气囊,所述弹性空心气囊的底部设有延伸管,且延伸管的底部贯穿电池盒的底部并连接有固定在电池盒底部的第一卡环,所述电池盒的底部连接有冷却盒,所述冷却盒的顶部设有与第一卡环配合使用的第二卡环,所述冷却盒的内部设有与第二卡环连通的冷却管,本实用新型结构简单,使用方便,既可以使电池保持密封状态,又可以在电池内温度升高时起到泄压和冷却的作用,提高了电池的安全性能,降低了电池爆炸的可能性。
本发明公开了一种锂离子电池充电保存装置及其控制方法,所述装置中的电路保护模块、整流滤波模块、变压模块、输出电路模块、开关模块、接口模块和电池存放模块依次电连接,传感器模块检测电池存放模块中的锂离子电池的状态以及整个电路的电流电压状态;所述控制模块将根据传感器模块的监测数据控制开关模块和加热模块的工作状态。所述控制方法中包括充电模式和维护模式,充电模式下根据电池的状态选择不同的充电模式,维护模式是为防止处于非工作状态下的电池过度放电而对其进行充电保护的工作过程。本发明实现了对锂离子电池充电过程和非工作状态状态下的保护,延长锂离子电池的使用寿命。
本发明提供一种低温锂离子电池正极材料及其制备方法,属于锂离子电池正极材料领域。解决目前锂离子电池低温性能差无法满足电动车市场需求的技术问题。该正极材料的结构式为LiNixCoyMnzMeO2,其中0.5≤x≤1, 0≤y≤0.3, 0≤z≤0.3,0≤e<1,x+y+z+e=1,M为掺杂微量元素,选自Al、Mg、Zn、Ce或La中的一种。本发明还提供一种低温锂离子电池正极材料的制备方法。发明制得的正极材料比容量高,首次充放电的库伦效率高、低温性能优异,在各倍率下,正极材料在低温时的放电容量能达到其在常温时放电容量的85%以上。
本发明公开了一种锂离子电池荷电状态和健康状态联合估算方法,具体方法为:第一步、对于新出厂的锂离子电池,在25℃以1/3C做恒流充放电实验,得到电池的初始额定容量C0;第二步、在每个采样时刻,根据采样电流i的大小,确定电池是否处于充、放电状态工作;第三步、循环模式;第四步、存储模式;第五步、判断电池的SOH是否小于80%,是则表示电池已经报废,循环结束,否则说明电池处于健康状态,返回第二步。有益效果:本发明提出了一种在多尺度框架下,联合估算电池SOC和SOH的方法。该方法同时考虑了锂离子电池在存储过程和循环使用过程中的SOH变化,减小了SOC和SOH估计算法的计算量,提高了估算精度。
本发明属于锂离子电池技术领域,具体涉及一种覆碳的锂离子电池负极集流体铜箔的改性处理方法。铜箔表面覆盖的碳层的厚度为15~28微米,覆碳面积比率为50%~85%。首先是将厚为20~30微米的铜箔用砂纸打磨,然后用酒精棉擦拭打磨后的铜箔表面,达到清除表面杂物和其表面氧化层的目的;采用电火花放电技术,以石墨棒为电火花工作机的导电电极A,以铜箔作为电火花工作机的另一个电极B,使石墨电极在铜箔表面尖端放电,单位面积铜箔表面覆碳面积比率在50%~85%,然后用毛刷清扫没有固定住的碳颗粒,从而制备得到覆碳的锂离子电池负极集流体铜箔。铜箔表面渗碳,主要提高了集流体的导电性,还提高了铜箔表面的塑性、粗糙度、耐蚀性和耐磨性。
本实用新型是一种锂电负极生产用旋振筛除尘装置,包括投料器、吸尘器和收尘器,投料器由投料漏斗、放料阀门和投料布袋组成,吸尘器由吸尘管道、吸尘罩和旋振筛组成,收尘器由离心式风机、收尘管道、收尘布袋和收尘盒组成;投料器位于整个装置的左侧,吸尘器位于整个装置的中间,收尘器位于整个装置的右侧。本实用新型结构简单,便于拆卸与安装,方便工人操作和及时清洗内部粉尘残留;装置中的除尘电机不与负极材料粉体直接接触,可有效防止因锂电负极粉体导电而造成的电机短路损坏;此装置在实际生产中除尘效果明显,对于改善锂电负极材料筛分车间的工作环境作用显著,实现了粉尘的有效管控,减少了因粉尘造成的生产事故和人体伤害。
本发明属于新能源材料技术领域,具体涉及一种在普通商用隔膜的一侧包覆多硫化物阻隔层来提高锂硫电池性能的方法。利用富Pyridinic-N分子与多硫化物间强的化学相互作用,将富Pyridinic-N分子引入到隔膜上作为多硫化物的吸附剂来缓解活性材料的穿梭损失。同时一定量的导电物质被引入到隔膜上来降低电池内部的电阻,提高活性材料利用。这种设计的锂硫电池表现出非常优异的电化学性能。在0.5C的高电流密度下(1C=1675mAg-1), 经过400次循环,电池容量仍然保持在840mAhg-1,容量衰减率只有0.07%。除了采用商业易获得的硫正极材料来降低成本和简化制备过程,这里引入的含大量Pyridinic-N的有机分子质量轻,无毒,容易量产,保证了锂硫电池的实用化。
本发明提供一种基于分离式重力热管的车用锂动力电池包两相流散热装置,涉及车用锂动力电池散热技术领域。该装置包括整体式相变底板、与整体式相变底板一端连通的重力热管、与重力热管连通的冷凝装置和与冷凝装置连通的热蒸汽回收管路,所述的整体式相变底板、重力热管、冷凝装置和热蒸汽回收管路形成闭合回路;所述的整体式相变底板为内部中空结构,内部放置制冷剂,整体式相变底板的上表面开有若干个凹槽,用于安装锂动力电池包。本发明提供的电池包装置,散热手段新颖,散热效率高且无需动力部件,具有结构简单,能耗低,可靠性高,维护方便的优点。
本发明提供一种锡基铁碳复合锂电池负极材料、制备方法及应用,属于锂离子电池材料技术领域。该方法先将四氯化锡、硝酸铁和柠檬酸混合,形成混合溶液,调节混合溶液pH值至中性,在60-80℃下持续搅拌形成溶胶凝胶;然后将溶胶凝胶研磨,在马弗炉内烧结,得到铁锡氧化物前驱体;最后将铁锡氧化物前驱体放入管式炉中,通入乙炔气体反应,得到锡基铁碳复合锂电池负极材料。本发明的锡基铁碳复合锂电池负极材料,以原位生成的铁碳化合物作为缓冲抑制了材料的体积变化与粉化,提高了材料的循环以及倍率性能,结果表明经过1次循环后,容量能达到900mAh/g,经过50次循环仍然可以保持在850mAh/g以上。
本发明公开了一种制备耐热收缩的锂离子电池隔膜的装置及其应用,包括挤出装置、冷却辊装置和干燥装置,所述冷却辊装置包括第一铸片辊、第二铸片辊和第三铸片辊,其中,所述第二铸片辊位于所述第一铸片辊和所述第三铸片辊之间,所述干燥装置包括多个成折线排布的传送辊。本发明提供的制备耐热收缩的锂离子电池隔膜的装置改善了电池隔膜制备工艺,提高了制得的电池隔膜的整体性能,可制得具有优异的耐热收缩性,且综合性能好的锂离子电池隔膜。
本发明提供一种锂空气电池用砜类电解液,属于电化学能源材料技术领域。该电解液包括:锂盐和有机溶剂,所述的有机溶剂为二甲基亚砜、二苯基亚砜、氯化亚砜、环丁砜或二丙砜中的一种或多种。本发明的砜类电解液具有低挥发性、高的氧气溶解能力、电化学窗口宽的优点,尤其对超氧根具有优异的稳定性,有利于可逆产物的生成和副反应的抑制,用于锂空气电池时,能进一步提高电池的可逆性,对电池容量、倍率性能以及循环稳定性都有显著改善效果。实验结果表明:应用本发明的砜类电解液组装成的扣式电池,在0.05mAcm-2电流密度下,首次放电比容量可高达9400mAhg-1。
本发明涉及一种锂离子电池用复合隔膜的制备方法,其中复合隔膜由无机氧化物涂层和有机隔膜基体组成;其特征在于制备方法为磁控溅射法,包括如下步骤:将有机隔膜基体材料裁成矩形放入磁控溅射腔体内,将无机氧化物靶材放入磁控溅射腔体内,调整磁控溅射设备的气压参数为0.1~1.0Pa、溅射功率参数为30~50W、溅射时间参数为1~30min,运行设备,在有机隔膜两侧溅射无机氧化物,制得复合锂离子电池隔膜。其工艺简单,隔膜具有很强的机械性能和很高的孔隙率;另外,该方法制备的锂离子电池隔膜不但具有遮断保护功能,而且当温度进一步升高时并不会发生熔融状况,具有很高的安全性能。
本发明提供了一种高倍率锂离子电池正极浆料,属于锂离子电池技术领域。本发明提供的高倍率锂离子电池正极浆料,由以下组分组成:正极活性物质、量子碳、粘合剂和溶剂。本发明以导电性能和动力学性能更好的量子碳作为导电剂,有利于得到倍率性能良好的锂离子电池,提高锂电池的充放电倍率,大大的缩短锂电池充电时间,解决了目前锂离子电池充电时间长、车用动力电池续驶里程短的问题,从而让普通百姓更容易接受和使用新能源汽车。
本发明提供了一种锂空气电池,包括正极;所述正极上复合有光电半导体材料。本发明将光能与金属空气电池进行结合,利用锂空气电池开放的电池体系,将光电正极材料集成到锂空气电池中,将太阳能直接转化成电能,同时还能进一步降低锂空气电池的过电位。本发明综合利用半导体材料的光生电性能来解决锂空气电池的高过电位问题,将光能和电能集成到一种储能设备中,将太阳能电池和锂空气电池优化结合,既具有太阳能电池的优点,也能解决锂空气电池过电势高的问题,并且两者集成到一个电池体系中,结构紧凑,而且制作方法简单,易于后续工业化发展。
本发明公开了一种锂离子动力电池荷电状态估算方法,其根据车辆锂离子动力电池状态选择相应的锂离子动力电池荷电状态修正方法:方法一:若车辆静置且静置超过2小时,则利用车辆上电单体电压进行锂离子动力电池荷电状态修正:车辆锂离子动力电池静置超过2小时及以上时,此时车辆上电,电池管理系统采集的单体电压信号接近于单体的开路(OCV值)电压值,利用此电压值进行电池荷电状态的修正;方法二:若锂离子动力电池进入充电流程,则利用充电过冲中的单体电压进行锂离子动力电池荷电状态修正:充电机充电过程中,利用电池管理系统实时采集的单体电压值修正电池荷电状态,要求充电电流小于电池容量的七分之一。
本发明涉及锂离子电池和氧化镍‑镍‑氧化镍纳米管阵列的制备方法。所述锂离子电池包括镍纳米管阵列复合电极,所述镍纳米管阵列复合电极由氧化镍‑镍‑氧化镍纳米管阵列制成。所述锂离子电池通过包括具有氧化镍‑镍‑氧化镍三明治结构的镍纳米管阵列复合电极,能同时增强锂离子电池中电极系统的电子和电解液离子的传输,在保证高比容量的同时,还获得了优越的倍率性能和循环稳定性。
本发明提供一种钠离子二次电池正极材料,属于锂钠混合电池领域。该材料的分子式为Li2RuO3。本发明还提供一种钠离子二次电池正极材料的制备方法,该方法是将含有锂的氧化物和含钌的氧化物混合,进行湿磨,得到混合物粉末;然后将得到的混合物粉末压制成片,进行烧结,得到钠离子二次电池正极材料。本发明还提供一种上述钠离子二次电池正极材料制备得到的锂钠混合电池,该锂钠混合电池具有较高的比容量且有良好的循环稳定性,实验结果表明:在2.0-4.0V电压区间以100mAh/g的电流密度进行恒流充放电,放电比容量高达150mAh/g,50次循环后,充放电比容量稳定在140mAh/g左右。
一种锂离子二次电池负极材料及其制备方法,属于锂离子电池技术领域。其是将Zn(NO3)2·6H2O和Mn(NO3)2按摩尔比1:2溶于去离子水,搅拌10~20分钟;边搅拌边加入沉淀剂氨水至pH=7.0~7.5;然后在80~95℃下搅拌至粘稠状态,加入与Zn(NO3)2·6H2O的摩尔比为1:1的蔗糖,搅拌均匀,然后在200~280℃条件下直至燃烧结束;再在600~900℃条件下处理6~20小时,从而得到本发明所述的锂离子二次电池负极材料ZnMn2O4。本发明制备的锂离子电池负极材料具有较高的容量,较稳定的循环倍率性能。
本发明公开了一种纳米钛酸锂的微乳液-水热合成方法,该方法选用十六烷基三甲基溴化铵、正己醇、环己烷和水相组成的微乳液,以钛酸四丁酯与氢氧化锂为反应原料,包括以下步骤:(1)分别配置含有0.02-2.0摩尔/升氢氧化锂和0.025-2.5摩尔/升四异丙醇钛微乳液;(2)将上述两种浓度的微乳液混合,室温下进行搅拌5-120分钟,然后转移到50毫升内衬聚四氟乙烯的高压反应釜中,在60-240℃下进行水热反应,水热时间为1-72小时,然后产物经离心分离、洗涤、干燥及热处理得到尖晶石型钛酸锂。本方法具有粒径和形貌可控、工艺与设备简单等特点。
一种锂离子电池正极片水性涂布粘接剂,涉及电池制造技术领域。将主粘接剂、增稠剂、辅助粘接剂和附着力增进表面活性剂混合在一起,搅拌均匀即可。本发明粘接剂粘接力强,使浆料满足分散更均一,所涂极片外观更鲜艳更漂亮。从而达到锂离子电池正极片的规模化生产的要求,实现锂离子电池正极片的水相涂布制造。
本发明提供了一种锂空气/氟化碳复合电池,包括正极、负极、隔膜和电解液,所述正极包括氟化碳材料,所述氟化碳材料用CFx表示,其中x代表氟化程度,且0.1
本实用新型公开了一种圆柱形锂电池的绝缘隔圈,其上设有同心的弧形带状通孔,绝缘隔圈的外沿还设有环形凸台,所述绝缘隔圈表面还设置有至少一个定位凸台,所述定位凸台与所述环形凸台位于绝缘隔圈的同一面。本实用新型并提供具有上述绝缘隔圈的圆柱形锂电池。本实用新型有益的技术效果在于:由于绝缘隔圈上设置有定位凸台,且所述定位凸台与环形凸台位于绝缘隔圈的同一面,当圆柱锂电池受到撞击或震动后,绝缘隔圈不会因受到电芯的挤压而变形或移位,保证了电池的安全性。
本发明公开了一种碳酸盐型盐湖卤水富集锂盐同时提取钾盐的方法,首先在常压下对碳酸盐型盐湖卤水进行等温蒸发浓缩,直至出现碳酸锂;然后采用高压CO2对盐湖卤水进行碳化处理,碳酸锂转化为碳酸氢锂溶于样液,并析出部分KHCO3,对该体系进行固液分离,剩余溶液重复上述操作,直至不再析出KHCO3固体;剩余液相放入恒温箱中等温蒸发浓缩,KHCO3持续析出,Li+以LiHCO3形式存在于溶液中,从而使得Li+浓度从原始的0.3‑0.7g/L富集至30g/L以上。本发明方法工艺条件易于操控,实验剂量容易放大,成本低廉;且与现有的锂的富集方法相比,具有快速高效且可连续生产的优点,并获得钾单盐产品。
本发明涉及一种一步制备表面包覆和化学活化富锂固溶体正极材料的方法,解决现有改性方法处理的富锂固溶体材料综合电化学性能不高的技术问题。该方法包括以下步骤:在40~100℃下,用金属硝酸盐的醇溶液对富锂固溶体正极材料进行表面处理,处理时间为1~8h;然后将材料洗涤,再进行高温烧结,烧结温度为300~700℃,烧结时间为1~4h。用本发明提供的方法处理的富锂固溶体材料作为锂离子电池的正极材料,其首次库伦效率为93.5%,循环100次后容量保持率为92.5%,在2A?g-1的电流下循环,其容量可达140mAh?g-1。并且该方法简单、易于操作,适合规模制备。
本实用新型涉及锂电池技术领域,尤其涉及一种高功率型磷酸铁锂电池模块,包括:本体、外壳、上盖、顶罩、锂电池组、固定板、联接片、正极端、负极端、指示灯、充电口、接线口、螺栓;所述本体的下部外壳为矩形状盒体,且外壳的顶部设置有凸形状上盖;所述上盖通过扣合方式在外部设置有封装顶罩,且上盖通过螺栓与外壳旋拧相连接。本实用新型通过结构上的改进,具有无记忆效应,容量高、电流大,适合深循环大电流环境使用,安全性能高,使用寿命长,节能环保,有利于本体在运输或使用过程中锂电池组的安全固定,防止锂电池组受到外力时出现缓冲现象,从而有效的解决了现有装置中存在的问题和不足。
本发明提供了一种废旧锂离子电池负极材料的回收利用方法,属于新电池体系技术领域。本发明将废旧锂离子电池负极材料拆解回收后进行清洗、干燥和煅烧,即可得到回收石墨,将回收石墨作为负极材料应用于钠离子电池和钾离子电池中,以实现回收石墨的二次利用。本发明提供的回收利用方法步骤简单,节约资源,且回收得到的石墨体现更优越的电化学性能。实施例结果表明,并且将本发明回收到的石墨应用于钠离子电池和人锂离子电池中后,钠离子电池和钾离子电池的充电比容量高,循环性能好。
本发明涉及一种锂-空气电池模具。解决现有锂空气电池模具构件较复杂、组装∕拆卸过程繁琐和空间利用率差的技术问题。锂-空气电池模具主要包括组装壳体和底座壳体。组装壳体的下端适于安装在另外的一个组装壳体的凹槽或者底座壳体的上端的凹槽内。组装壳体上端的凹槽及所述的底座壳体上端的凹槽内适合放置锂-空气电池模块。这种结构设计的模具用于制作锂-空气电池有利于减轻电池的重量,提高电池的空间利用率和电池的能量密度。本发明锂空气二次电池模具结构紧凑、组装方便,可广泛使用于锂空气二次电池的基础和应用研究。包含上述电池模具的锂空气二次电池具有较大的能量密度和较长的循环寿命。
本发明涉及一种碳包覆硅酸锰锂复合材料的制备方法。一种碳包覆硅酸锰锂复合材料的制备方法,包括以下步骤:依照化学式Li2MnSiO4中各元素配比称取锂源、锰源及硅源并混合均匀得到混合物,所述硅源为硅炭黑;将所述混合物研磨1小时~2小时得到预产物;及在保护性气体氛围下,将所述预产物在700℃~900℃下煅烧7小时~10小时得到所述碳包覆硅酸锰锂复合材料。上述碳包覆硅酸锰锂复合材料的制备方法能避免使用溶剂而较为环保。
本发明公开了一种以溴化锂溶液溶解木质素的方法,过程包括:将木质素进行预处理,得到纯化的木质素;将纯化的木质素放入质量浓度为60%的溴化锂溶液中,并在90‑130℃下搅拌溶解,得到溶解液;将溶解液过滤,收集滤液,得到木质素溶解液。木质素芳基醚键选择性裂解于溴化锂溶盐水合物中,进而使木质素的α‑OH在溴化锂作用下发生溴化从而使木质素发生溶解,进而提高了木质素的溶解量。
中冶有色为您提供最新的吉林有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!