本发明涉及一类TiCN颗粒强化的含11~30%Cr的烧结高铬铸铁合金,属抗耐磨金属复合材料制备技术领域。该类合金的基本制备步骤如下:(1)合金成分和TiCN颗粒添加量配比设计;(2)原料混料均匀化混合;(3)合金压制和烧结制备。该类TiCN颗粒增强高铬铸铁合金的硬度达到82~91HRA左右,冲击韧性达到2~15J/cm2,抗弯强度达到1000MPa以上。复合材料具有更高的红硬性、更低的摩擦系数、优异的耐磨性和耐蚀性等,使用较为廉价的TiCN颗粒为强化相和高铬铸铁作为基体,使合金的原料成本和比重显著降低。本发明中通过TiCN颗粒强化显著地提高含11~30%Cr高铬铸铁的硬度和耐磨性,合金制备工艺步骤简便、流程短、降低成本,提升性价比,开发生产出可以部分替代WC‑Co硬质合金的高性能耐磨材料,具有巨大的潜在经济效益和社会效益。
本发明提供的环境障碍涂层,由包覆在C/SiC复合材料上的由内向外依次设置的SiC粘结层、莫来石中间层和硅酸镱外涂层组成。该涂层采用二次化学气相沉积法制备得到SiC涂层包覆的C/SiC复合材料;溶胶‑凝胶结合空气喷涂工艺制备莫来石中间层,固体反应烧结+空气喷涂工艺制备硅酸镱外涂层。本发明通过巧妙的EBC涂层体系和制备工艺的设计,首次通过固相反应烧结结合空气喷涂工艺制备硅酸镱外涂层,使莫来石中间层和硅酸镱外涂层之间结合紧密,涂层致密无裂纹。对传统溶胶‑凝胶工艺做了很大程度上的改进,极大程度上避免了传统溶胶‑凝胶法制备涂层在烧结过程中开裂、剥落、结合力差的不足,能满足大型构件和异形件的使用。
本发明属于金刚石复合材料的制备领域,具体涉及一种多主元合金‑金刚石磨具材料及其制备方法和应用。所述复合材料的原料包括80‑95vol.%的粘结相粉末和5‑20vol%的金刚石。所用粘接相粉末由Cu、Ni、Fe、Sn、Ti按原子比为(20‑50):(10‑40):(5‑30):(1‑10):(1‑10)组成。其制备方法为:将粘接相粉末与金刚石粉末充分混合后采用放电等离子烧结SPS或热压HP工艺在850‑1100℃烧结得到产品。该材料具有良好的界面结合、金刚石稳定性、摩擦磨损性能,以及较高的断裂强度。本发明设计和制备的多主元合金‑金刚石磨具材料可以用于制备金刚石磨盘和金刚石砂轮等磨削类金刚石工具。
本发明提供了一种香草醛改性壳聚糖‑SiO2复合气凝胶材料的制备方法及其在卷烟烟气吸附中应用,将壳聚糖进行氨基改性后,硅源前驱体在改性壳聚糖的酸性溶液中水解、缩合,静置凝胶,凝胶经老化、溶剂交换后进行干燥,获得亲水性复合材料,凝胶进行表面改性、干燥后获得疏水性复合材料,干燥后获得的气凝胶材料进行卷烟烟气有害物质吸附。本发明的香草醛改性壳聚糖‑SiO2复合气凝胶材料对于卷烟烟气中的有害物质吸附能力强,选择性高;本发明的方法制作简单,生产成本低,安全性能高。
本发明公开了一种碳化硅纤维框架的制备方法,采用电流体动力喷射3D打印机,然后将得到的打印样品进行热处理,得到碳化硅纤维框架,本发明制备方法工艺简单,操作方便,降低了生产成本,能够满足工业化生产要求,碳化硅纤维框架一次成型,有效的避免了传统拉丝纤维二次编织复杂和整体性差的缺点;本发明所提供的碳化硅纤维框架,纤维与纤维之间互相胶黏,编织结合力强、力学性能优异,是一种理想的复合材料的高性能增强体;利用本发明所述碳化硅纤维框架制备得到三维交联纤维结构的SiCf/SiC复合材料,具有高强度、高模量和耐高温等特性,并且具备可以任意剪切、打孔等二次加工性能。
本发明公开多孔二维氮化碳@石墨烯@氮化碳三明治结构光催化材料的制备方法及应用。首先采用改进的Hummer法合成GO纳米片,然后以三聚氰胺为氮源,采用简单的局部原位热氧侵蚀策略,即可制得多孔二维氮化碳@石墨烯@氮化碳三明治结构光催化材料。本发明只需采用低廉环保的溶剂和可控加热过程,无需采用有毒试剂和繁琐的后处理过程,与纯的CN相比,本发明优化的GOCN复合材料显示出明显改善的光催化产氢活性,产氢率可高达12.48mmol g‑1h‑1,比CN在相同的条件下高32.0倍。
本发明公开了一种陶瓷预处理液,其制备原料包含蚀刻剂、pH缓冲剂、pH调节剂,溶剂为水。本发明还公开了一种陶瓷预处理方法,包含以下步骤:除油、表调、预浸、预处理。使用本发明处理后的陶瓷表面具有均匀分布的微孔,用于制备与塑料、橡胶、涂料复合的陶瓷复合材料,复合后不同材料之间的结合力强,复合材料的整体气密性好。
本发明提供了一种磷酸铁锂/氟磷酸钒锂/碳复合正极材料及其制备方法,其分子式为(1‑x)LiFePO4·xLiVPO4F/C,其中x=5~40wt%,所述复合正极材料中C的质量分数为0.5~2.0wt%。本发明通过先合成磷酸铁锂,然后合成VPO4中间体,最后将磷酸铁锂、VPO4中间体和其他合成氟磷酸钒锂的原材料混合,进行压片烧结,保证了复合材料中不存在磷酸钒锂的杂相生成,复合材料中形成具有双相嵌锂活性物质的复合结构来稳定磷酸铁锂材料的表面性能,提升锂离子表/界面扩散能力和电子的传输速率,在不牺牲能量密度的同时提高其倍率性能和循环性能。
本发明公开了一种钴掺杂双层碳氮复合物纳米材料的制备方法,步骤:(1)钴掺杂聚多巴胺修饰的碳纳米管CNT@PDA‑Co的制备;(2)CNT@PDA‑Co表面覆盖石墨烯 (rG) 制备CNT@CN‑Co@rG;(3)在CNT@CN‑Co@rG表面覆盖碳氮复合物制备CNT@CN‑Co@rG@CN。本发明利用聚多巴胺热解产生的碳氮复合物对钴进行包裹,充分保证钴的稳定性;同时产生的钴‑氮活性基团对ORR有很强电催化活性;最后通过高温熔盐处理三聚氰胺,明显提高了材料的含氮量和对ORR的电催化活性;通过采用碳纳米管作为材料的内核支撑体,使材料具有多孔的特点,其真实表面积大大增加;利用石墨烯作为中间层,极大地改善了材料的电子传导能力,提高了ORR的速率。本发明的复合材料可以作为阴极材料应用于各类空气燃料电池,具有广泛的应用价值。
本发明公开了一种复合增韧改性剂及其制备方法和应用。所述复合增韧剂重量组成为:废旧轮胎胶粉10~50份、热塑性丁苯橡胶10~50份、聚乙烯树脂20~50份、增溶剂0.3~2份。本发明复合增韧改性剂可显著提高废旧HDPE的抗冲击韧性;同时利用自由基微交联技术,使复合材料体系中各相关组分的产生适当交联,提高材料体系的拉伸强度,并通过无机成核剂来控制废旧HDPE的晶粒大小和结晶度,达到综合优化复合材料体系力学性能的目的。本发明方法操作简单,适应性强,易于工业化生产,同时利用废旧轮胎胶粉,不仅降低了生产成本,而且减少了固体废弃物对环境的污染,具有显著的经济效益和社会效益。
本发明公开了一种氮杂化石墨烯量子点和银共同修饰的石墨相氮化碳纳米片复合光催化剂及其制备方法和应用,该复合光催化剂包括氮杂化石墨烯量子点、银单质和石墨相氮化碳纳米片,其中氮杂化石墨烯量子点和银单质共同附着在石墨相氮化碳纳米片表面形成复合材料。其制备方法包括制备氮杂化石墨烯量子点负载的石墨相氮化碳纳米片复合材料和负载银单质。本发明的复合光催化剂具有光催化活性高、光催化稳定性好、光响应范围广的优点,其制备过程简单、操作简便、成本较低。本发明的复合光催化剂可用于处理抗生素废水,具有应用方法简单、成本低、对抗生素去除率高、光催化性能稳定、可重复利用性好等优点。
锂离子电池正极材料磷酸亚铁锂-氟磷酸钒锂的制备方法,包括以下步骤:(1)将含铁元素的铁源溶液和含钒元素的钒源溶液,按铁元素与钒元素的摩尔比为1 : 1,同时加入到反应器中反应,生成非晶态钒酸铁沉淀;(2)将非晶态钒酸铁沉淀在空气中400—650℃烧结4—10h;(3)将所得结晶态钒酸铁前驱体与锂源、氟源、磷源和碳源混合均匀;(4)将混合物经置于管式烧结炉中,于非氧化气氛下600℃-800℃烧结4-20h,冷却到室温。本发明所得正极复合材料,把磷酸亚铁锂的高比容量和氟磷酸钒锂的快速锂离子通道与相对较高的电子电导率以及良好的循环稳定性相结合形成新型正极复合材料,电化学性能优异。
本发明公开了一种飞艇囊体材料焊接加工方法,通过对单面涂层高分子复合材料非涂层面进行处理,涂覆粘接剂,使材料非涂层面具有焊接加工性能,并由于选择了合适的粘接剂和涂覆工艺,解决了大型飞艇囊体使用的高强度单面涂层高分子复合材料非涂层面焊接加工困难的问题,保证了焊接部位气密性、强度、耐候性、抗曲挠性等能满足产品的要求。
Chitosan‑Schiff/DOPO阻燃剂及其制备方法和改性环氧树脂,涉及阻燃材料技术领域,前述Chitosan‑Schiff/DOPO阻燃剂具有全新分子结构,其中未含有卤系元素,是一种绿色无卤环保阻燃剂,在热裂解或燃烧时不会对环境造成污染,有利于环保和可持续发展,经过对添加上述阻燃剂的环氧树脂复合材料进行阻燃和耐热性能测试,证明添加上述阻燃剂后还能够提升复合材料的玻璃化转变温度,并且阻燃剂在添加剂量较低的情况下也能保证良好的阻燃效果。另外值得一提的是,本发明提供的制备Chitosan‑Schiff/DOPO阻燃剂的工艺简单,反应温度较低,安全性较高,对于设备的要求较低,更易于工业上规模化生产应用。
本发明涉及复合材料的添加剂,具体涉及一种聚氯乙烯发泡材料专用钙基功能型填料及其制备方法。解决本发明技术问题的方案是:一种聚氯乙烯发泡材料专用钙基功能型填料,由包括以下重量份配比原料制备而成:天然无水石膏10‑90份,硅灰石1‑10份。本发明的钙基功能型填料应用到PVC发泡材料中,可以在制备复合材料过程中对润滑和发泡起更好的促进作用,促进PVC均匀发泡,同时还能有效地稳定温度,使链式反应顺利进行,反应过程不断链,得到更加均匀的产品。
本发明公开了一种耐磨铝合金,包括铝合金基材和附着在铝合金基材表面的自润滑复合材料,所述自润滑复合材料包括组分:铝粉50~60重量份,硅粉3~5重量份,二硫化钨粉20~25重量份,聚醚醚酮15~20重量份;还公开了其制备方法。通过界面冶金结合,在铝合金表面得到Si‑Al连续相骨架结构,提高了涂层与基材的附着力,同时二硫化钨和聚醚醚酮镶嵌在骨架材料中形成自润滑耐磨层,极大地降低了铝合金表面的摩擦系数,提高了其耐磨性能。
本发明公开了一种硬碳包覆膨胀微晶石墨材料及其制备方法和在钠离子电池中的应用。硬碳包覆膨胀微晶石墨由硬碳层包覆膨胀微晶石墨构成。其制备过程为:将微晶石墨球磨后,经过化学插层处理和膨胀处理,得到膨胀微晶石墨;膨胀微晶石墨采用树脂碳源包覆后,进行碳化处理,即得。该复合材料导电性好,储钠能力高,结构稳定,其作为负极材料用于制备钠离子电池,表现出高比容量、良好倍率性能和长循环稳定性能,且复合材料制备过程采用的原料廉价、生产周期短,具有明显的经济效益,易于实现工业化应用。
本发明公开了一种炭/炭复合改性基体材料及其制备工艺,C/C复合材料中起到烧蚀增强作用的有SiC、ZrC、热解碳和炭纤维;热解碳包裹在纤维骨架上,SiC均匀包围在热解碳周围,ZrC作为基体填充的主要相均匀的分布在基体内部;SiC和ZrC形成采用以下质量百分比组成成分:80~95%的Zr粉、5~20%的Si粉和0~5%的C粉混合;本发明的制备工艺包括以下工艺步骤:C/C坯体预处理;Zr‑Si‑C混合粉末的制备;真空碳管炉高温处理;成型件应力缓解热处理;氧乙炔焰烧蚀仪进行涂层的烧蚀性能考核。本发明反应熔渗改性后的C/C复合材料在3000℃左右氧乙炔焰烧蚀时间提高到150s且材料整体结构不发生破坏。
本发明涉及一种使用球形微晶石墨材料的锂离子电容器的制备方法,采用球形微晶石墨材料作为负极,将制备的磷酸铁锂/膨胀微晶石墨/碳复合材料制成电极片作为正极,正负极片之间夹以聚丙烯隔膜,组装成锂离子电容器,正负极片之间注入浓度为1 mol/L的硝酸锂水溶液为电解液。球形微晶石墨材料采用廉价易得的微晶石墨替代石墨烯为原料,得到的复合材料具有优异的电化学性能,在保持充放电比容量不降的情况下,具有更好的循环稳定性,经济效益高,适合工业化应用。
本发明提供了一种多孔镍合金电解析氢阴极复合材料的制备方法,主要应用于电解析氢技术领域。本发明采用粉末反应合成法,将Ni、Fe、Mo、C、LaNi5五种粉末按一定比例配好,其中Fe、Mo、C、LaNi5粉共占总含量的22.5~52wt?%,将配好的粉末混合均匀,加入0.5~4%的硬脂酸,干燥后通过压力成型获得生坯,利用固相偏扩散的原理对生坯进行真空烧结,即可获得Ni?Fe?Mo?C/LaNi5多孔电解析氢阴极材料。本发明制得的多孔电解析氢复合阴极材料具有比表面积大、析氢过电位低、催化性良好、耐腐蚀性优良、工作性能稳定、制备工艺简单环保等优点,对氢能源的开发有着重要意义。
本发明公开了制备掺杂改性LiVPO4F锂离子电池正极材料的方法,按照一定的化学计量比称取锂源、钒源、磷源、氟源、掺杂元素和还原剂,快速并彻底把V5+还原成V3+,形成绿色孔状材料,经过研磨过筛后,置于真空管式炉中,在惰性气氛中加热到650~850℃,保温2~14h后自然冷却,得到改性LiVPO4F复合材料。解决了LiVPO4F材料循环稳定性能差等问题,同时掺杂后样品的粒度分布均匀、电导率更高,改善了材料的电化学性能,简化了生产工艺,更易于工业化生产。
本发明涉及纳米材料及粉末冶金领域,特别是纳米梯度复合W?Cu材料的制备方法,制备多种成分的W?Cu复合粉末,通过控制复合粉末的粒度、形貌,进而改变不同成分的W?Cu复合粉末的烧结活性,获得能在相同温度下烧结近全致密的不同成分的W?Cu复合粉末;将纳米复合W?Cu粉末按铜含量由高到低依次分层铺粉后压制成形;脱模、预烧、一步液相烧结后得到纳米梯度复合W?Cu材料。该方法通过对复合粉末制备过程的工艺控制,达到W?Cu复合粉末粒度、形貌以及烧结致密化行为的控制,进而实现一步烧结制备多层梯度复合材料,制备的W?Cu梯度复合材料致密度高,组织细小且均匀,层间结合完好,成分和性能沿厚度方向呈连续变化;成分范围大,性能变化范围大。
本发明涉及一种三价钛自掺杂二氧化钛/碳复合负极材料的制备方法。该制备方法基于溶剂热反应,将钛矿/TiO2?B双晶球置于丙三醇的乙醇溶液中进行溶剂热处理,再经过在氩气氛中煅烧制得黑色的三价钛自掺杂二氧化钛/碳复合材料。通过本发明所述方法获得的复合材料尺寸分布均匀、结晶度高、不引入其他杂元素,且能实现对二氧化钛的三价钛自掺杂与碳包覆双重改性。三价钛与碳的协同作用,使得二氧化钛的导电性显著增加,从而使二氧化钛具有高的比容量、良好的倍率性能,同时保持了二氧化钛材料优异的循环性能。本发明所述方法具有操作简单、条件温和、工艺简易、制备周期较短等优点。
本发明涉及使用碳纳米管脲醛树脂碳包覆球形微晶石墨材料的锂离子电容器的制备方法,采用碳纳米管脲醛树脂碳包覆球形微晶石墨材料作为负极,将制备的磷酸铁锂/膨胀微晶石墨/碳复合材料制成电极片作为正极,正负极片之间夹以聚丙烯隔膜,组装成锂离子电容器,正负极片之间注入浓度为1mol/L的硝酸锂水溶液为电解液。本发明的碳纳米管脲醛树脂碳包覆球形微晶石墨材料采用廉价易得的微晶石墨替代石墨烯为原料,得到的复合材料具有优异的电化学性能,在保持充放电比容量不降的情况下,具有更好的循环稳定性,经济效益高,适合工业化应用。
本发明公开了一种包裹双生长因子的核壳结构微球及其用途。它包括核壳球形结构,所述核结构的材料为聚乳酸,聚乳酸粘度为0.5-2.0dL/g;壳结构的材料为聚乳酸与聚羟基乙酸组成的复合材料,所述复合材料中聚乳酸与聚羟基乙酸的质量比为:75-50:25-50;所述核和壳内分别包裹有一种生长因子,所述生长因子为BMP-7或PDGF-BB。本发明还提供所述包裹双生长因子的核壳结构微球在制备诱导细胞增殖和诱导低细胞密度培养的间充质干细胞成骨分化药物方面的应用。该核壳结构微球同时包裹两种生长因子,并且先后释放这两种生长因子,使这两种生长因子分别在最适合的时间得到释放,效果好。
一种铝电解用硼化钛/氧化铝阴极涂层,本发明采 用TiB2/Al2O3复合材料为主要原料,利用热固性呋喃树脂、环氧树脂的固化特性,采用平均分子量高的呋喃树脂、复合环氧树脂及固化剂,使TiB2/Al2O3阴极涂层在常温下固化,制备铝电解用阴极涂层。本发明采用的TiB2/Al2O3复合材料,能与铝液完全润湿,而且具有优良的导电性,成本只有TiB2粉末的1/3,大大降低了铝电解用阴极涂层的成本,促进了阴极涂层在铝电解工业中的推广应用,达到节能降耗,延长铝电解槽寿命的目的。
本发明一种复合带钢的单面连续热镀锌方法,通过将特种复合材料的表面经水蒸气氧化形成保护层,再利用铁、铬氧化物的分解压差,通过控制气氛露点,使碳钢面铁还原而复层面铬不还原,镀锌后,经热风气刀吹扫复层表面粘附的少量锌液,最后将复层表面氧化层采用物理方法除去。该法能够实现单面镀锌复合材料规模生产,使碳钢面具有均匀、致密、可自由控制厚度的镀层,同时确保复层的表面无锌层,光洁美观。
本发明属于沥青材料领域,提供了一种高弹性模量纤维复合沥青,该高弹性模量纤维复合沥青的主要成分为沥青,还包括相对于沥青的质量百分含量为5%-18%的复合材料,以及相对于沥青的质量百分含量为3%-10%的聚乙烯;所述复合材料包括聚合物1200份-1300份;改性玄武岩纤维700份-800份;表面活性剂或偶联剂5份-50份。本发明的纤维复合沥青的抗高、低温及耐疲劳、耐老化等各项综合技术性能优越,特别是高温抗车辙实验次数大大提高,可以延长沥青路面的使用寿命。
本发明属于高分子材料合成领域,具体涉及到环氧封端-含邻苯二甲腈侧基聚芳醚树脂、固化物及其制备法。以4-(3,5-二羟基苯氧基)-邻苯二甲腈或其衍生物,和商用芳香双卤化合物作为缩聚单体,再同时加入其他芳香双酚单体,进行亲核取代反应,再以3-氯-1,2-环氧丙烷为封端剂,可制得一系列环氧封端-含邻苯二甲腈侧基聚芳醚树脂。该方法步骤简单,方便可行。上述聚芳醚树脂在常用极性溶剂中均表现出较好的溶解性,可多种形式加工成型,具有良好粘接性能和较高固化反应活性。该树脂在芳香二胺等存在下,0~200℃进行预固化,再加热到250~350℃进行热处理,可获得尺寸稳定、优异耐热性和高强度的树脂固化物。本发明的环氧封端-含邻苯二甲腈侧基聚芳醚用于耐高温涂料、漆、胶粘剂、薄膜和复合材料等领域,有着广阔的应用前景。
双梯度复合涂层,在基体表面的涂层由多个子涂层组成,构成震荡波动的梯度,这种梯度由同时存在的两种梯度——成分梯度和成分波中心值梯度复合而成;每个子涂层都有成分变化趋势相反的两种成分梯度,相邻子涂层的成分梯度变化趋势相似,由基体到表面,相邻子涂层中构成梯度物质的成份平均值也有梯度变化,即成分波中心值梯度。利用多元涂层的复合效应和梯度涂层的可设计性,在金属、无机非金属、高分子及其复合材料等固体材料的表面制备这种双梯度涂层,与普通梯度涂层相比,其优点在于热应力更小,热稳定性更好,抗热冲击性能更高,无明显宏观裂纹,与基体的连接性能好。
中冶有色为您提供最新的湖南有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!