碳纳米纸阻燃聚合物基复合材料制备方法,是为了解决现有树脂基纤维增强复合材料存在易燃、燃烧速度快,不易熄灭,所产生有毒气体污染环境等不安全因素;且在复合材料中加入碳纳米管等纳米材料虽可改善其阻燃性,但其阻燃防火特性与碳纳米管等纳米材料的分散性及含量影响复合材料的整体力学性能等技术问题而设计的。本方法将至少一种阻燃材料加入到碳纳米纸结构中,再用碳纳米纸结构作为复合材料的阻燃外表层,形成碳纳米纸阻燃聚合物基复合材料。有益效果:具有非常好的阻燃特性,将多种阻燃材料加入到碳纳米纸结构中,大大提高了复合材料的阻燃防火特性。与未加碳纳米纸的复合材料相比,碳纳米纸阻燃复合材料的点燃时间可降低10-30%以上,峰值热释放速率降低15-45%以上,烟释放总量降低10-30%以上。
为了改善复合材料的硬度、耐磨性,设计了一种反应熔渗法制备的C/C‑ZrC‑Cu复合材料。采用丙烯,PAN基炭纤维为原料,所制得的反应熔渗法制备的C/C‑ZrC‑Cu复合材料,其硬度、致密化程度、抗弯强度都得到大幅提升。其中,用Cu‑Zr混合粉末作为熔渗剂,复合材料的物相组成为ZrC,Cu,C及残留的Zr相。随渗剂中Zr的质量分数增加,ZrC的含量先增加再减少,残余Zr相的含量增加,Cu相的含量降低。ZrC相存在2种分布形态:部分ZrC在炭纤维周围聚集形成ZrC包覆层,部分ZrC颗粒弥散分布在基体的富Cu相内。Zr质量分数增加到60%时,复合材料的硬度和抗弯强度最高,分别为181和294MPa。C/C‑ZrCCu复合材料的弯曲断裂为假塑性断裂,随Cu相含量提高,基体韧性断裂特征更加明显。本发明能够为制备高性能的C/C‑ZrC‑Cu复合材料提供一种新的生产工艺。
本申请属于复合材料层合板冲击损伤评估领域,具体涉及一种复合材料层合板冲击损伤评估方法,包括:当量化复合材料层合板冲击损伤的凹坑区域;当量化复合材料层合板冲击损伤的凹坑损伤区域;当量化复合材料层合板冲击损伤的分层损伤区域;基于当量化的凹坑区域、凹坑损伤区域、分层损伤区域构建复合材料层合板冲击损伤有限元分析模型,对复合材料层合板冲击损伤进行评估。
一种应用于建筑、家具、包装、园林、运输领域中的木塑复合材料带过渡圆角多孔四方形型材,由立板、过渡圆角板、斜板、外腹板、内腹板组成,木塑复合材料带过渡圆角多孔四方形型材的外层由四个外腹板及四个过渡圆角板连接四方形外框架,木塑复合材料带过渡圆角多孔四方形型材的内层由四个内腹板连接四方形内框架,外腹板与内腹板之间分别由四个立板支撑连接,四个外腹板与四个过渡圆角板分别连接,过渡圆角板与内腹板之间分别由四个斜板支撑连接。该实用新型采用先进的加工方法和适当的添加剂,设计能满足多种领域需要的木塑复合材料型材,使该木塑复合材料型材具有环保、耐用、使用寿命长、有木材的外观、比塑料制品硬度高、刚性强、抗酸碱、防虫蛀、阻然性好,零甲醛、无污染以及可循环利用。
本发明的一种纤维增强复合材料梁的高精度损伤定位方法,包括:建立纤维增强复合材料梁的多质点集中质量模型;根据质量块划分准则确定幂指数最小值与划分质量块数量;搭建激光扫频测试系统并测试所述复合材料梁的固有频率和振型向量;利用理论计算获得复合材料梁在损伤前的固有频率和振型向量,获得复合材料梁的损伤前的刚度矩阵;利用实验测试获得的复合材料梁的固有频率、振型向量和损伤前的刚度矩阵得到残余力向量,初步确定损伤质量块的位置坐标;根据损伤位置偏差系数判别准则,判断该损伤位置是否满足定位精度要求,如果不满足则提高多质点集中质量模型的质量块划分数量,重新确定损伤质量块的位置坐标,直到损伤位置满足定位要求。
本发明涉及一种复合材料层合板层间结合强度测量方法,利用层间结合强度测量装置,垂直抓取撕裂复合材料层合板,测量90°剥离的层间结合强度,具体步骤包括:1)将试件水平固定在层间结合强度测量装置上;2)层间结合强度测量装置对试件进行撕裂破坏;3)剥离过程中实时测量垂直方向剥离力,将测得的数值取加权平均数,计算出复合材料层合板的层间结合强度。本发明提出了一种科学合理的复合材料层合板层间结合强度评价与测量方法,该方法简单、易懂,且充分考虑了工程实际中的复合材料层合板层间失效方式,从而弥补了科研与工程中对于复合材料层合板层间结合强度的评价和测量方法缺失。测量装置,操作简单方便、成本低廉。
本发明涉及到一种麦饭石及植物纤维复合材料及其制造工艺,该复合材料主料为麦饭石和植物纤维粉,混合助剂采用硬脂酸、钛酸酯、硅烷偶联剂、硬脂酸钙、硼酸锌脂混合物,其中麦饭石和植物纤维粉控制在60‑80目进行混合反应,并且混合及压模较常规热固性工艺需要采用高压较低温进行。本发明兼容麦饭石与植物纤维的两种特性,并且大大提高植物纤维的疏水性,增加复合材料中麦饭石的韧性,又同时保留了密胺树脂材料的优异性能,降低生产成本。并且能够释放微量元素及负离子,适用于日常生活使用。
本发明涉及型材加工技术领域,特别是一种圆截面复合材料的螺纹连接件及其制作方法。它包括一个连接件本体和一个与此连接件本体连接的螺纹连接件外套,其特征在于在所述的连接件本体外表和连接件外套内孔上分别开有螺旋凹槽,与此螺旋凹槽截面相对应的钢丝缠入连接件本体外表面的螺旋凹槽内或嵌入连接件外套内孔的螺旋凹槽内。本发明的优点是制作简单,由于本发明采用了上述结构,将钢丝镶嵌在圆截面复合材料的连接件本体的螺旋凹槽内,使钢丝起到了螺纹的作用,由于钢丝表面光滑,有效地避免了圆截面复合材料的连接件本体表面的磨损,且连接可靠紧密,耐磨性好,延长了连接件的使用寿命。
本发明涉及金属基复合材料和焊接领域,特别提供了一种由金属陶瓷与合金工具钢采用真空钎焊连接技术制备的复合式搅拌摩擦焊接工具,该焊接工具适用于颗粒增强金属基复合材料的搅拌摩擦焊接。所述焊接工具的轴肩和搅拌针采用高强耐磨金属陶瓷材料,而夹持端采用合金工具钢,焊接工具由两种材料通过真空钎焊连接构成。所述焊接工具用高强耐磨金属陶瓷材料是以陶瓷颗粒为增强相,以耐热金属合金为粘结相,通过粉末冶金真空烧结方法制备。本发明的复合式焊接工具与传统钢质焊接工具相比,在搅拌摩擦焊接颗粒增强金属基复合材料时,其耐磨性和使用寿命可提高100倍以上,且不会引入杂质污染焊缝,可获得高的焊缝强度系数和高的焊缝表面质量。
本发明属于复合材料制备领域,具体涉及一种利用冷气动力喷涂低温下快速制备Al基B4C复合材料的方法。首先按照预定的化学配比将铝或铝合金和B4C粉末混合,随后采用冷气动力喷涂的方法将不同化学配比的铝或铝合金/B4C复合粉末直接喷涂沉积形成块体Al基B4C复合材料,之后可对制备的复合材料进行热处理或热等静压处理,改善复合材料的力学性能。本发明制备的Al基B4C复合材料,制备温度在600℃以下,Al和B4C颗粒之间不会存在界面反应。
本发明风沙环境下旋翼无人机复合材料桨叶可靠性试验装备,包括装备本体,风向调节装置,沙子导向装置、激光测振装置和沙子循环装置,本发明通过多普勒激光测振仪发射激光束,经由激光导向管射向第一反光镜,利用光的反射原理水平射向第二反光镜,第二反光镜的激光束经由椭圆状薄壁反光镜反射射向复合材料桨叶测点位置,通过旋转椭圆状薄壁反光镜实现对复合材料桨叶测点的全局扫描,通过驱动电机控制激振频率进而控制沙子的流量及流量阀和扇叶控制气流大小和方向,实现本发明在风沙环境下对复合材料桨叶多个测点的测量,获取满足在风沙环境下工作的复合材料桨叶,避免因复合材料桨叶破坏、损坏致使多旋翼无人机无法正常工作,甚至酿成安全事故。
一种制备聚苯胺复合材料的方法属于化工技术领域,该复合材料是聚苯胺/金/二氧化锰复合材料,该复合材料使用聚苯胺与氯金酸、高锰酸钾和高锰酸钾直接反应制备而成。并可以通过调节氯金酸和聚苯胺的质量之比来调节聚苯胺/金/二氧化锰复合材料中金纳米和二氧化锰的颗粒和分布,制备的聚苯胺复合材料可以用作超级电容器的电极材料。
本发明公开了一种复合材料板材,包括从上到下依次连接的上表层、芯层和下表层,所述上表层包括功能面层和其下方的连续纤维增强热塑性复合材料层,所述下表层包括连续纤维增强热塑性复合材料层和其下方的功能面层,所述各层从上到下依次连接后采用冷热压机复合成型。本发明还包括该复合材料板材的制备方法及其应用。本发明的复合材料板材具有防水、防潮、不变形,耐摩擦、耐用和耐腐蚀,使用年限长等优点。本发明的复合材料板材结构科学合理,绿色环保,在节能减排及环境保护等方面具有突出优点,具有良好的应用前景。
本发明属于材料加工技术领域,具体涉及一种陶瓷颗粒增强镍铝基复合材料的激光烧结合成方法。本发明的技术方案步骤是:将镍粉、铝粉按照原子比Ni:Al=3:1混合,并加入镍铝混合粉总质量0.5-2wt%的钨精矿石粉末,进行球磨获得混合均匀的混合粉料,将混合粉料压制成圆柱形压坯,将压坯置于数控机床上,启动CO2激光加工机,激光功率为900-1200W,激光照射时间为10~20s,将压坯表面点燃并使其发生自蔓延反应,得到激光烧结合成的陶瓷颗粒增强镍铝基复合材料。本发明使基体自身的反应和增强相的生成以及金属基复合材料的制备结合在一起,由于原位自生的增强陶瓷相使得镍铝金属间化合物的高温力学性能能得到了明显的改善与提高。
一种光‑热能量转换和热能存储定形相变复合材料,属于功能复合材料领域。一种光‑热能量转换和热能存储定形相变复合材料,所述复合材料由支撑材料和有机相变材料组成,所述支撑材料与有机相变材料的质量比为3:7~1:9;所述支撑材料为片层状,有机相变材料均匀填充在支撑材料层间,构成层状堆叠结构;所述支撑材料为Ti2C、Ti3C2、Ti3CN、V2C、Nb2C、TiNbC、Nb4C3、Ta4C3、(Ti0.5Nb0.5)2C或(V0.5Cr0.5)3C2的纳米片;所述有机相变材料为石蜡、脂肪酸、脂肪酸酯或醇类化合物。所述复合材料具有高相变焓值,优异的形状稳定性和热稳定性,在热能存储与利用领域具有广阔的前景。
本发明公开了一种介孔石墨烯负载银纳米粒子复合材料及其制备方法和应用。所述的介孔石墨烯负载银纳米粒子复合材料是首先采用浸渍法直接将银纳米粒子负载到石墨烯上,获得石墨烯负载银纳米粒子复合材料;再将石墨烯负载银纳米粒子复合材料进行高温烧结,而获得的复合材料;按重量百分比,银纳米粒子的负载量为1%~20%。本发明合成过程简便,反应过程易控,且所制备的介孔石墨烯负载银纳米粒子复合纳米材料表现出优异的催化抗菌性能。
耐摩擦复合材料及其制备方法,属于高分子复合材料领域。复合材料中各组分按重量份组成,聚甲醛树脂100份,抗氧剂0.1~1份,聚四氟乙烯5~20份,聚氨酯5~10份,硅灰石5~30份,偶联剂0.1~2份,润滑剂0.5~3份。将处理后的硅灰石与聚甲醛、聚四氟乙烯、聚氨酯、抗氧剂、润滑剂混合,经双辊混炼机混合、平板硫化机压片,得到耐摩擦聚甲醛复合材料。本发明制备的复合材料具有摩擦系数低、力学性能好的特点,在制备轴承、齿轮等耐磨零部件等方面得到应用。
本发明公开一种具有近红外光催化效果的复合材料的制备方法。以氧化钇、氧化铥、氧化镱、氟化铵等为原料,通过简单的水热方法制得YF3:Tm3+、Yb3+上转换发光材料;以硝酸银和氢氧化钠为原料,通过化学沉淀的方法制得YF3:Tm3+、Yb3+/Ag2O复合材料;通过光沉积方法制得YF3:Tm3+、Yb3+/Ag2O@Ag复合材料。通过本发明的方法制备的催化剂稳定性好,化学性质稳定,可以重复使用。利用它可在可见光和近红外光照下降解有机污染物,在环境净化中具有重要的实用价值。
本发明公开了一种基于rGO‑SnO2纳米复合材料的NO2气敏元件及其制备方法,属于石墨烯‑金属氧化物复合材料气敏元件技术领域。所述气敏元件主要由电极元件和均匀涂覆在电极元件上的rGO‑SnO2纳米复合材料组成,所述rGO‑SnO2纳米复合材料的微观形貌为在还原氧化石墨烯片层上均匀生长着SnO2纳米球,所述SnO2纳米球直径为40~70nm,为四方锡石相结构。本发明采用一步水热法制备出比表面积大、电阻率低、分散性良好的rGO‑SnO2纳米复合材料,然后将rGO‑SnO2纳米复合材料作为气敏涂层制备出NO2气敏元件。该气敏元件有效地解决了传统NO2气敏元件工作温度较高及石墨烯类气敏元件灵敏度较低、恢复时间较长等问题,具有较好的应用价值和发展前景。
本发明公开了一种无机纳米粒子/热塑性颗粒协同增韧树脂基复合材料及其制备方法,属于复合材料高性能化技术领域。本发明通过简单易行、成本低的方法,将无机纳米粒子和热塑性颗粒同时均匀有效稳定的引入到树脂基复合材料层间,实现了对复合材料的协同增韧,增韧效果远远高于单独使用无机纳米粒子或热塑性颗粒增韧的效果,大大提高了复合材料的层间断裂韧性,扩展了复合材料的应用领域。
本发明涉及一种二硼化钛基陶瓷复合材料及其制备方法。其相组成至少包括TiB2、TiC、Ti和(TiO1.20)3.12,其制备方法为将碳源、TiB2粉末和无水乙醇混合均匀,烘干去除无水乙醇,制成TiB2混合粉体;将所述TiB2混合粉体模压成形、干燥、或干燥后碳化,获得TiB2‑C素坯;用Ti、Al2O3和NH4Cl的混合粉末埋住TiB2‑C素坯及Ti块,进行真空熔渗,获得二硼化钛基陶瓷复合材料。本发明的方法步骤简单、温度要求低,在较低制备成本的条件下能够获得致密度高的二硼化钛基陶瓷复合材料,在制备过程中样品尺寸变化<1%,属净尺寸烧结;并且本发明的方法能够生产各种形状复杂的产品。
本发明涉及高速列车制动用的摩擦材料领域,具体地说是一种陶瓷/金属双连续相复合材料闸片及其制备方法。按重量分数计,其成份由15%~40%的泡沫碳化硅陶瓷和10%~30%的摩擦组元和75%~30%的金属组成。采用高分子热解结合可控熔渗反应烧结的技术制备出具有三维网络结构的碳化硅泡沫陶瓷、选择合适的摩擦组元填充到泡沫陶瓷网孔内、利用挤压铸造的方法将熔融的铜合金压注到泡沫陶瓷骨架内获得陶瓷/金属双连续相复合材料闸片。复合材料闸片能够与28CrMoV锻钢制动盘配副并具有合适而稳定的摩擦系数、低磨损率、高耐热性、抗热机械损伤能力强、工艺性能好、制造成本低和长寿命等特点,完全满足200~300km/h高速列车制动需求,并对350km/h高速列车制动需求具有良好的竞争优势。
制备金属基复合材料的电流直加热动态烧结热 压炉,由电路控制系统、感应调压器、干式变压器、动态烧结 热压炉和计算机数据采集系统构成。热压烧结模具由普碳钢外 框、模具、陶瓷绝缘层构成,模具采用铁或高纯石墨制成,在 模具内壁嵌有陶瓷绝缘层。采用电流直加热动态烧结热压炉制 备金属基复合材料的烧结工艺中,压力50~60MPa,输入电压 为5~20V,烧结时间为5~20分钟。采用本实用新型的装置 制备金属基复合材料可实现利用低电压、大电流在短时间内对 产品高温烧结的效果,所制备的金属基复合材料具有优良的性 能,抗拉强度、硬度显著优于现有技术制备的产品。
本发明涉及一种复合材料内部缺陷类型自动识别检测方法,步骤为:利用红外热波无损检测设备对复合材料进行检测,生成红外图像;对红外序列图像进行相空间重构,确定复合材料缺陷的位置并分割图像的缺陷区域;对具有缺陷区域的红外序列图像进行相空间重构,进行奇异值分解得到奇异矩阵及左右两个投影矩阵,对上述两个投影矩阵分别进行再次矩阵重构,再次通过奇异值分解提取缺陷时间信息和空间信息的代数特征,构造混合特征向量作为缺陷的特征表征;运用RBF神经网络分类器结果完成识别分类判断。本发明对复合材料的部缺陷实现自动识别检测,对复合材料的损伤类型进行快速的检测,对复合材料的使用情况提供快速检测手段,具有重要的实际意义和研究价值。
本发明涉及电化学涂敷催化剂领域,具体为一种利用电化学原理在MAX多孔材料基体上涂敷厚度可控纳米稀土氧化物或其复合材料催化剂的方法。本发明通过湿化学的方法来制备结构可控的MAX相催化剂载体材料,进一步利用电化学原理在MAX多孔材料基体上涂敷厚度可控催化剂。以汽车尾气催化用纳米稀土氧化物或其复合材料为涂敷目标物,MAX相多孔催化剂载体材料为阴极,电解液为对应的硝酸盐溶液,浓度为0.5-1.5M,以Pt为阳极进行电化学涂敷,获到厚度可控的、纳米颗粒覆盖均匀的纳米稀土氧化物或其复合材料催化剂涂层。本发明通过湿化学方法制备孔径尺寸和孔隙率可控的多孔催化剂载体,并利用基体导电的特性,利用电化学方法对多孔催化剂载体材料进行催化剂涂敷。
本发明涉及一种原位合成铝碳化钛-碳化钛/氧 化铝复合材料及其制备方法。复合材料由氧化铝颗粒增强相、 碳化钛颗粒增强相和铝碳化钛基体组成,其中氧化铝颗粒增强 相的体积百分数为10~53%;碳化钛颗粒增强相的体积百分数 为20~60%,铝碳化钛基体的体积百分数为10-60%。制备 方法:原料为纳米二氧化钛粉、铝粉和石墨粉, TiO2∶Al∶C的摩尔比为3∶ (4.9~5.1)∶(1.8~2.0)。原料粉经物理机械方法混合8~24小 时,装入石墨模具中冷压成型,施加的压强为10~20MPa,在 通有惰性气体保护气氛的热压炉内烧结,升温速率为10~50 ℃/分钟,烧结温度为900~1600℃、烧结时间为0.5~2小时、 烧结压强为20~40MPa。本发明可以在较低温度原位制备出具 有较高强度的 Ti3AlC2- TiC/Al2O3复合材料。
本发明公开了一种连续纤维增强杂萘联苯共聚芳醚砜共混树脂基复合材料及其制备方法,属于先进复合材料科学技术领域。将树脂基体溶解在有机溶剂得到树脂溶液,将连续纤维通过该树脂溶液,使其浸渍树脂溶液,经热流烘干通道除去有机溶剂,热流烘干通道温度为120℃~280℃,经冷却后得到预浸带;将预浸带裁剪成与模具大小匹配的预浸片,根据复合材料层压板的厚度铺设相应层数的预浸片,并在预浸片之间铺设PPBES或共混树脂薄膜,得到预浸料;将预浸料放于模具中经热压成型工艺,脱模后即得复合材料层压板。本发明对于推动先进复合材料的发展和开拓连续纤维增强高性能热塑性树脂基复合材料在航空航天领域的应用具有实用价值。
一种回收材料制成的复合材料、形成方法及其应用。复合材料由基体和功能性底膜组成,基体为多聚合物颗粒,由多种回收料颗粒及热塑性材料构成,功能性底膜赋予复合材料多种功能特性。复合材料由工业生产过程中产生的高分子材料的边角废料破碎后和热塑性材料制成多聚合物颗粒通过加温加压与功能性底膜制成。复合材料可直接作为铺地材料使用;或可用于复合地毯的背底、中间层;或可用于汽车用脚垫、轮罩、行李箱左右侧围板、备胎底板及盖板。本发明通过简单的形成方法,减小了生产过程中的污染,原材料来源广,可连续生产;所得的复合材料成型后的强度高且具有弹性,同时达到降低成本、实现废弃物再利用、减少环境污染的目的,能产生很高的经济效益。
本发明公开了具有层状和空心陶瓷球复合结构的铝基复合材料及其制备方法,属于复合材料技术领域。该复合材料具有陶瓷层与铝合金层交替叠层而形成的层状结构,同时在层状结构中具有随机分布的空心陶瓷球,而空心陶瓷球中又具有纳米陶瓷纤维增强。该复合材料是先以纳米陶瓷颗粒为原材料通过自组装方法形成具有层状和空心陶瓷球复合结构的多孔陶瓷,再通过液相浸渗方法将上述多孔陶瓷与铝合金复合而形成的。性能测试表明,与不含空心陶瓷球结构的层状铝基复合材料相比,本发明制备的具有层状和空心陶瓷球复合结构的铝基复合材料的密度更低,比强度更高,因而有利于实现更优的结构减重效果。
一种石墨烯/非晶二氧化钛纳米棒复合材料、制备方法及其应用,属于电磁波吸收领域。所述复合材料以氧化石墨烯、钛酸四丁酯为原料,通过一步水热法将氧化石墨烯还原为石墨烯的同时,钛酸四丁酯中的钛元素也在水热过程作用下以非晶二氧化钛纳米棒的形式均匀生长在在石墨烯片层两面,最终形成石墨烯/非晶二氧化钛纳米棒复合材料。其中,所得复合材料中的石墨烯片层的长、宽均处于为1~8μm之间,非晶二氧化钛纳米棒长度约为300~500nm。本发明所制备的复合材料能够有效吸收电磁波,通过调节复合材料的厚度,吸收频段可覆盖雷达波段的Ku波段(2‑2.5mm)、X波段(2.5‑3.5mm)以及绝大部分的C波段(3.5‑5.5mm),该材料简单易得,适宜大量制备,在电磁波吸收领域有广阔应用前景。
中冶有色为您提供最新的辽宁有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!