本发明公开了一种石墨烯薄膜/硅复合材料的制备方法,涉及涉及离子储能材料技术领域。石墨烯薄膜的制备:以天然鳞片石墨为原料,采用电化学非氧化层离的方法制备多层石墨烯浆体,并在基板上经刮涂、干燥后,依次进行炭化、石墨化,即得石墨烯薄膜;石墨烯薄膜/硅复合材料的制备:以制备的石墨烯薄膜作为基底,采用磁控溅射的方法依次在基底材料上交替生长粘结材料和硅材料,并使硅材料处于粘结材料的层状包裹结构中,即得石墨烯薄膜/硅复合材料。本发明以天然鳞片石墨为原料,采用磁控溅射技术,将硅、镍材料与高导电石墨烯薄膜基底材料结合,制备硅基复合材料。
本发明属于复合材料技术领域,涉及一种碳化硅复合材料,其包括六方碳化硅微粉和TiCx,其中0.4≤x≤1.1,六方碳化硅微粉的体积百分比为50~80vol.%,TiCx的体积百分比为20~50vol.%。制备时,将六方碳化硅微粉和TiCx两种粉末按照不同体积比在行星球磨机里混料,混合均匀后装填入石墨磨具中,进行放电等离子烧结,烧结压力20‑50MPa,烧结温度1600‑1800℃,保温10‑30min,制得碳化硅复合材料。本发明利用非化学计量比碳化钛作为烧结助剂对碳化硅进行活化烧结,成功克服了碳化硅烧结温度高、韧性差的问题,制备的碳化硅复合材料具有较低的烧结温度、较高的硬度和韧性。
本发明涉及纤维增强树脂基复合材料技术领域,且公开了散射耐候型纤维增强树脂基复合材料及其制备方法。所述散射耐候型纤维增强树脂基复合材料的制备方法包括以下步骤:将复配抗氧剂体系和光稳定剂体系混合均匀,得到添加剂;用钛酸四丁酯对碳纤维进行改性得到改性碳纤维,将改性碳纤维与芳纶浆粕混合得到纤维增强材料;将液体环氧树脂、固化剂、光散射剂与添加剂混合均匀,制得散射耐候树脂组合物;将纤维增强材料在散射耐候树脂组合物中浸渍,热压后得到散射耐候型纤维增强树脂基复合材料。本发明制备得到的散射耐候型纤维增强树脂基复合材料具有优良的散射耐候性。
本发明涉及一种核壳结构的功能复合材料及其制备方法,具体是一种具有高电磁屏蔽性能的丁苯粒子/石墨烯/铝复合材料及其制备方法。该复合材料的复合颗粒是以石墨烯包覆纳米级丁苯粒子为内核结构、以铝薄膜层为壳层结构的颗粒,其中石墨烯包覆丁苯粒子的含量为90 vol%~98 vol%,金属铝的含量为2 vol%~10 vol%,其中石墨烯在复合颗粒中的含量不低于0.05 vol%。本发明通过制备具有多层结构的复合颗粒,在低含量金属铝和微量石墨烯的情况,能够显著提高复合材料的电导率和电磁屏蔽性能,降低材料比重,实现了复合材料低比重、高导电、高电磁屏蔽性能的目标。
本发明公开了一种氧化石墨/铁氧体复合材料及其制备方法和应用,该氧化石墨/铁氧体复合材料的制备方法为向GO@Fe3O4中加入乙醇进行超声分散后,加入N‑(三甲氧基硅丙基)乙二胺三乙酸搅拌进行硅烷化反应,制得氧化石墨/铁氧体复合材料,该氧化石墨/铁氧体复合材料应用于对废水中重金属离子的吸附净化。该氧化石墨/铁氧体复合材料既解决了对废水中重金属离子吸附净化后的分离问题,又提高了对废水中重金属离子的吸附能力。
本发明公开了一种耐磨抗氧化陶瓷釉料填充用纳米碳酸钙复合材料的制备方法,该方法包括如下步骤:A、向氢氧化钙浆料中加入特定的晶型控制剂并通入二氧化碳进行碳化反应,得到特定浓度的纳米碳酸钙浆料;B、加入钼酸钠,搅拌反应使得聚合羟基钼包覆在碳酸钙表面上;C、经脱水干燥得到初级复合材料的粉料,然后再将所得初级复合材料在150‑180℃高温下处理得到氧化钼‑碳酸钙复合材料,即得。采用本发明的方法所制备的纳米碳酸钙复合材料具有良好的耐磨性、抗氧化性能以及较高的白度,同时具有更宽的使用范围。
本发明提供了一种铝合金碳纤维复合材料车轮及其制造方法,其由铝合金部分(1)和复合材料部分(2)所组成,其特征在于:所述的铝合金部分包括车轮轮辐部分和车轮部分轮辋部分,所述的车轮部分轮辋部分包括沿着车轮轮辐部分侧面排列的花瓣状突起;所述的复合材料部分(2)附着在所述的车轮部分轮辋部分表面;以及,所述的复合材料部分(2)是由碳纤维层和金属网层交替叠加组成的。本发明所述的复合材料车轮的有益技术效果在于:车轮散热和轻量化是车轮的两个重要性能指标,此方案易于使轮辋内部热量传到至铝合金部分;此方案易于使热量通过铝合金部分散失掉;此方案将多种材料结合使用,有易于推动车轮轻量化效果;以及此方案成型工艺简单。
本发明公开了碳纤维复合材料与铝合金板材冲压连接的方法及其装置,属于冲压连接领域。本发明按照设计要求选定碳纤维复合材料与铝合金板材的连接位置,在此位置碳纤维复合材料与铝合金板材之间设置夹层结构,将此位置置于冲压连接装置,对碳纤维复合材料与铝合金板材分别进行加热,在温度达到各自的可塑范围时,进行冲压连接。本发明可实现碳纤维复合材料与铝合金板材连接,通过增加夹层结构,实现板材的机械互锁,解决传统无铆连接无法实现连接点变形强化的问题。
一种陶瓷基板AlN/Ti层状复合材料及其制备方法和应用,属于陶瓷/金属复合材料技术领域。本发明所述的AlN/Ti层状复合材料是通过氮化铝陶瓷基板与钛通过烧结反应扩散结合得到的。反应结合的复合界面形成的扩散区域包含Ti3Al2N2、Ti3AlN、TiN1‑x、Al2Ti中的两种或两种以上化合物组织。还提供了该复合材料的制备方法和应用。本发明陶瓷基板AlN/Ti层状复合材料的界面结构能最大程度地调节陶瓷基板与金属层之间由于金属与陶瓷的热膨胀系数差异导致的应力,从而增强陶瓷基板与后续的金属铜层的结合强度,提高整个封装模块在热循环期间的可靠性,其导电性有利于后续金属层的焊接,并且工艺简单,成本低。
本发明提供了一种碳化硅复合材料,属于复合材料领域。该碳化硅复合材料包括以下制备原料:β‑SiC微粉50~80vol.%和TiCx微粉20~50vol.%;其中,0.4≤x≤0.9。本发明的非化学计量比化合物TiCx中有较多的空位缺陷,是一种不稳定的化合物,能量高,表面活性高,能够活化烧结,降低碳化硅材料的烧结温度;另一方面,TiCx弥散到β‑SiC中,能够实现弥散增韧。实施例结果表明,本发明的碳化硅复合材料的烧结温度为1600~1800℃,断裂韧性为4.96~7.34MPa/m1/2,说明本发明的碳化硅复合材料具有较低的烧结温度和较高的韧性。
本发明公开了一种新型碳硅基复合材料的制备方法及应用,将蔗糖与硅粉相结合,在室温下初步干燥8~12h,然后在氮气气氛条件下于773~1473K煅烧2~3h,得到初级碳‑硅复合材料,将初级碳‑硅复合材料与石墨纤维相结合,得到碳硅基复合材料。本发明的制备方法成本低、操作简单、原料来源广泛、制备工艺中无有毒气体产生,且制备的碳硅基复合材料在锂电池负极材料应用上性能稳定,表现出优异的循环性能,具有良好的工业应用前景。
一种低摩擦亚克力基复合材料,其原料组分为:亚克力粉体40‑50份、甲基丙烯酸甲酯30‑50份、活化剂0.6‑1.0份、抑制剂0.001‑0.003份、引发剂0.25‑1.5份、聚四氟乙烯粉体5‑20份;上述复合材料的制备方法主要是将亚克力粉体、引发剂和聚四氟乙烯粉体加入混料机中混合2‑5h,得到复合材料粉体混合物;将甲基丙烯酸甲酯、活化剂和抑制剂混合均匀后得到混合溶剂;将复合材料粉体混合物加入到混合溶剂中搅拌混合均匀后,倒入模具,在真空<10Pa,常温20‑30℃下固化60‑150min,脱模,即成。本发明常温制备、工艺简单、操作方便、能耗低,制备的低摩擦亚克力基复合材料具有摩擦系数低、磨损率低等特点,适用于轴套、齿轮等领域。
本发明的超高介电常数的钛酸钡复合材料及其柔性电容器制备方法,属于介电材料制备技术领域,制备的钛酸钡复合材料可同时应用于大容量固态电容和柔性电容。当钛酸钡复合材料作为大容量固态电容时,该材料相对介电常数可以>106,通过原位生长法将KDP、BaTiO3和PVDF复合,使BaTiO3、PVDF和KDP之间形成面接触,产生大量界面,产生界面电荷,以提高材料介电常数,有效填补BaTiO3/PVDF柔性体系下超高介电常数研究空白。将钛酸钡复合材料作为填充物与大量PVDF结合,可制成性能优异的柔性电容。且复合材料加入量低至0.1‑10%,增大材料柔性,节省经济成本。同时,KDP是环境友好型铁电材料,其中的钾、磷元素能够有效地缓解电容器报废对土壤环境污染问题。
一种原位合成Fe‑FeAl2O4复合材料的制备方法,包括以下步骤:将Fe粉、Fe2O3粉和Al2O3粉三种原料分别按质量百分比为50%~84%、5%~18%、11%~33%称重,并将上述三种原料置于容器中混磨均匀,得到混均粉体;将混均粉体放入烘干箱中烘干,且烘干时烘干箱内的真空度抽至80~120Pa;以及将烘干后的混均粉体在高温真空气氛下热压烧结,以使部分Fe还原Fe2O3形成氧化亚铁,氧化亚铁与Al2O3反应生成铁铝尖晶石,铁铝尖晶石并与未参与反应的剩余Fe相结合制备得到Fe‑FeAl2O4复合材料,本发明制备得到的Fe‑FeAl2O4复合材料界面间相容性好、润湿性好;而且,本发明的原位合成Fe‑FeAl2O4复合材料的制备方法整个流程操作简单、生产成本低。
本申请涉及建筑材料的技术领域,具体公开了一种高延性水泥基复合材料及其制备方法。一种高延性水泥基复合材料,包括以下重量份的原料:水泥200‑450份、粉煤灰100‑350份、矿粉100‑350份、骨料100‑450份、微硅粉20‑45份、减水剂5‑25份、消泡剂1‑6份、纤维素醚0.1‑0.8份、喷射调节剂0.5‑6份、聚乙烯醇纤维5‑40份、水1000‑3000份;喷射调节剂包括重量比为(2‑6):1的硅酸镁铝与淀粉醚。本申请的复合材料60d的抗压强度达到61.76N/mm2、抗折强度达到19.44N/mm2、弯曲强度达到15.10N/mm2、弯曲韧性达到138.15KJ/m3,复合材料的强度与韧性较好。
本发明属于树脂材料技术领域,具体涉及一种玻璃纤维增强酚醛树脂复合材料及其制备方法。本发明提供了一种玻璃纤维增强酚醛树脂复合材料的制备方法,本发明采用石墨烯基料对玻璃纤维增强酚醛树脂复合材料的耐热性能进行改善,通过在酚醛树脂中添加石墨烯基料,使得石墨烯基料能够与酚醛树脂基体产生新的稳定连接键,在基本不改变酚醛树脂密度的情况下,使得酚醛树脂的力学性能得以改善。另外,由于石墨烯基料具有较好的导热性,散热均匀快速,而且形成的化学键稳定性好,也可以提高最终制备得到的玻璃纤维增强酚醛树脂复合材料的耐热性。
本发明属于树脂材料技术领域,具体涉及一种硼纤维增强酚醛树脂复合材料及其制备方法。本发明提供了一种硼纤维增强酚醛树脂复合材料的制备方法,本发明采用石墨烯基料对硼纤维增强酚醛树脂复合材料的耐热性能进行改善,通过在酚醛树脂中添加石墨烯基料,使得石墨烯基料能够与酚醛树脂基体产生新的稳定连接键,在基本不改变酚醛树脂密度的情况下,使得酚醛树脂的力学性能得以改善。另外,由于石墨烯基料具有较好的导热性,散热均匀快速,而且形成的化学键稳定性好,也可以提高最终制备得到的硼纤维增强酚醛树脂复合材料的耐热性。
本发明属于聚合物水泥基复合材料成型加工技术领域,具体涉及改性油井水泥基复合材料的及其制备方法。采用将获得的改性环氧树脂与油井水泥按一定质量百分数进行均匀搅拌,注入模具固化成型,24h脱模后,放入温度为20±2℃,湿度为60±5%恒温恒湿养护室养护28d,制得超高韧性且环境友好的改性油井水泥基复合材料,本发明制备方法能降低环氧树脂油井水泥基复合材料的制备成本,改善油井水泥基复合材料的综合性能,与未改性的油井水泥基复合材料相比,其抗折强度及抗压强度均有显著提高。
本发明涉及一种高阻燃长纤维增强热塑性复合材料及其应用,属于新型环保材料研发、生产、应用技术领域。该复合材料以聚苯硫醚、聚苯砜为基体塑料,与传统LFT‑D材料相比,氧指数提高了52%,烟密度降低了96%,由于本发明所述的高阻燃长纤维增强热塑性复合材料具有良好的材料特性,将其制成部件在高铁车辆内装、航空航天内装、舰船尤其是潜艇内部装备,可以有效提升安全性能,为相关领域的发展开拓了新的方向。
本发明涉及一种钨合金复合材料及其3D打印方法,按照质量百分比计,该钨合金复合材料由如下原料组成:镀铬碳纤维1.5%‑2.0%,铬13.0%‑18.0%,钛1.5%‑2.5%,钒0.4%‑0.8%,钼2.0%‑2.5%,锡0.1%‑0.3%,镧0.5%‑1.5%,铪0.6%‑1.2%,锰0.1%‑0.3%,余量为钨和其它不可避免的杂质元素。本发明提供的钨合金复合材料通过限定各原料的种类及其用量,彼此之间相互作用,可提高钨合金复合材料的相对密度,减少甚至避免钨合金复合材料中的孔隙和裂纹,显著提高钨合金复合材料的力学性能,尤其是冲击韧性及硬度。
本发明公开了一种磺化氧化石墨烯‑壳聚糖复合材料制备方法及应用,其中,制备方法包括:将甲酰胺和氯磺酸按体积比为20~30:6~9混合,获得磺化试剂;将氧化石墨烯‑壳聚糖复合材料加入到所述磺化试剂中,在65~75℃的温度下反应3~5h;待氧化石墨烯‑壳聚糖复合材料均匀的分散在磺化试剂中后,将上述反应液经洗涤抽滤处理,直至滤饼为中性;对滤饼进行透析处理24h后,再经冷冻干燥,即可获得磺化氧化石墨烯‑壳聚糖复合材料。本发明通过甲酰胺和氯磺酸制得的磺化试剂对氧化石墨烯‑壳聚糖复合材料进行磺化处理,使经磺化处理后氧化石墨烯‑壳聚糖复合材料具有良好的水分散性。
本发明公开一种铜/铜合金轴承复合材料的制备方法,其特征是:以高强度铜铬(CU-CR)合金为材料,采用脱铬技术去除铜铬合金表面的铬元素,制备表面为多孔纯铜、基体为铜铬合金的铜/铜合金轴承复合材料。所制备铜/铜合金轴承复合材料表面为纯铜,质地软、硬度低,很容易和轴颈跑合,具有良好的抗胶合性,同时,表面多孔结构可贮存润滑油,能够进一步提高润滑特性,因而具有良好的摩擦润滑和耐磨性能。
本发明涉及复合材料技术领域,提出了一种透湿阻隔噬菌体的复合材料,一种透湿阻隔噬菌体的复合材料,包括从内到外依次设置的柔性亲水无纺布层、透湿薄膜层、耐磨PP布层;所述柔性亲水无纺布层与所述透湿薄膜层、所述透湿薄膜层与所述耐磨PP布层通过热熔胶粘合,所述透湿薄膜层的原料包括以下重量份组分:TPEE透湿型热塑性聚酯弹性体80~120份,芥酸酰胺20~40份。通过上述技术方案,解决了现有技术中的复合材料抑菌性、透湿性不能满足使用需求的问题。
本申请提供一种针状复合材料嵌套式拉挤成型模具及使用方法,包括:模具主体,所述模具主体内具有容纳空腔;所述模具主体内还设有模具通道;芯模组件,所述芯模组件安装于所述模具通道内,所述芯模组件具有拉挤通道,所述拉挤通道用于对浸润树脂的纤维丝束提供成型空间;加热组件,所述加热组件安装于所述容纳空腔内部,所述加热组件用于对所述成型空间加热,以使浸润纤维丝束的树脂固化形成针状复合材料成品,本申请通过在模具通道内部安装芯模组件,芯模组件内部具有拉挤通道,针状复合材料在拉挤通道内部加热固化,针状复合材料成品不会出现飞边、富树脂现象,并且成型产品沿长度方向均能够达到所需要的理论尺寸。
本发明涉及合金材料技术领域,具体公开一种锆基复合材料及其制备方法。所述锆基复合材料以金属锆为基体,以TiN颗粒为增强相,通过轧制与热处理结合的方法将所述增强相加入所述基体中得到;所述增强相在所述锆基复合材料中的质量含量为2‑10%。本发明提供的锆基复合材料不仅具有原料来源广泛、制备方法简单、成本低的优势,还具有较高的屈服强度、抗拉强度、延伸率、抗辐射和低密度等优良的力学和理化性能,完全满足核用锆合金的使用要求。
本发明属于复合材料技术领域,涉及一种碳纳米管‑纳米聚晶金刚石复合材料及其制备方法,其原料包括碳纳米葱(OLC)和碳纳米管(CNT),其中所述CNT的质量百分比为10~30wt.%,余量为OLC。制备时,将OLC和CNT两种原料按照不同质量比进行混料;将混料后的CNT和OLC混合物装填入硬质合金模具中预压,预压压力为400~600MPa。然后,把预压后的样品装入模具中进行高温高压烧结。烧结压力为7~25GPa,烧结温度为1800~2200℃,保温时间为5~60min,随后降温卸压,制得碳纳米管‑纳米聚晶金刚石复合材料。本发明采用CNT平衡烧结体内部压力损耗,降低了烧结条件,解决了采用OLC为原料制备聚晶金刚石烧结体的烧结条件高的问题,获得了高硬度的碳纳米管‑纳米聚晶金刚石复合材料。
本发明提供了一种氢氧化镍薄层包覆氮化钨纳米线复合材料及其制备方法与应用,所述氢氧化镍薄层包覆氮化钨纳米线复合材料中氢氧化镍薄层均匀包覆在氮化钨纳米线表面,其是通过在基底上负载水合氧化钨纳米线前驱体,并将水合氧化钨纳米线前驱体于氨气下进行高温氮化,再采用电化学沉积得到氢氧化镍薄层包覆氮化钨纳米线复合材料。本发明制备工艺流程简单,操作容易,成本低廉,所得复合材料电催化性能提高,对工业碱性电解水催化剂的发展具有大规模应用的潜力。
一种利用树脂/席夫碱复合材料去除水中重金属的方法,其主要是:将有机纳米席夫碱负载于强酸性阳离子交换树脂上,制得树脂/席夫碱复合材料。将该复合材料装填于固定床吸附系统中,受重离子污染的水体以顺流的方式通过吸附柱去除净化。吸附后的复合材料用HCl溶液脱附,脱附后的纳米复合吸附材料采用清水或稀盐酸冲洗至中性即可循环使用。当受重离子污染水中含有大量的Ca2+、Mg2+、Na+等常规阳离子竞争时,经本发明吸附材料处理后,出水中重离子仍能降低到GB5749-2006生活饮用水控制标准以下,且效果显著。
本发明属于耐磨材料技术领域,公开了一种高摩擦系数耐磨复合材料及其制备方法。其主要技术特征为:原料为10—30重量份高密度聚乙烯、30—50重量份超高分子量聚乙烯、10—20重量份交联橡胶粉、0.1—0.5重量份抗氧剂1010、5—20重量份无机粉体、1—5重量份炭黑。本发明提供的高摩擦系数耐磨复合材料,各组分经密炼机混炼成团,再经模压成型,充分利用高密度聚乙烯的可加工性、超高分子量聚乙烯的耐磨性、交联橡胶粉的高摩擦系数得到具有动摩擦系数高、耐磨性好且具有较高强度的复合材料。高摩擦系数耐磨复合材料采用密炼工艺完成,边角料可回收利用,绿色环保。
本发明公开一种二氧化钛-聚偏氟乙烯-膨胀石墨阻燃保温复合材料的制备方法。所述方法以二甲基亚砜、钛酸四丁酯、聚偏氟乙烯和膨胀石墨等为主要试剂,首先对聚偏氟乙烯和膨胀石墨分别进行化学碱化和化学氧化处理,然后在二甲基亚砜溶剂中配制钛酸四丁酯-3-氨丙基三甲氧基硅烷-异丙苯基苯基磷酸酯-聚偏氟乙烯-膨胀石墨混合溶液,随后对混合溶液进行凝胶化和陈化处理,最后将凝胶化和陈化处理后的复合材料分别于100~105℃、190~200℃温度下进行烘干热处理,制备二氧化钛-聚偏氟乙烯-膨胀石墨阻燃保温复合材料。本发明制备的复合材料具有机械强度高,可加工性能好,阻燃保温性能优良等优点。
中冶有色为您提供最新的河北有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!